
Huan-Lei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1541675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy and Environmental Science, 2013, 6, 871.	15.6	983
2	Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy. ACS Nano, 2013, 7, 5131-5141.	7.3	869
3	Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes. ACS Nano, 2013, 7, 11004-11015.	7.3	813
4	Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy and Environmental Science, 2015, 8, 941-955.	15.6	740
5	Carbonized Chicken Eggshell Membranes with 3D Architectures as Highâ€Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2, 431-437.	10.2	573
6	High Hydrogen Storage Capacity of Porous Carbons Prepared by Using Activated Carbon. Journal of the American Chemical Society, 2009, 131, 7016-7022.	6.6	505
7	Facile Approach to Prepare Nickel Cobaltite Nanowire Materials for Supercapacitors. Small, 2011, 7, 2454-2459.	5.2	426
8	Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy and Environmental Science, 2014, 7, 1708-1718.	15.6	381
9	Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Research, 2012, 5, 605-617.	5.8	356
10	Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chemical Communications, 2013, 49, 8973.	2.2	348
11	Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon, 2010, 48, 3599-3606.	5.4	332
12	Hybrid Device Employing Three-Dimensional Arrays of MnO in Carbon Nanosheets Bridges Battery–Supercapacitor Divide. Nano Letters, 2014, 14, 1987-1994.	4.5	276
13	N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. Journal of Materials Chemistry A, 2016, 4, 5973-5983.	5.2	256
14	Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Materials, 2020, 27, 212-225.	9.5	235
15	Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochimica Acta, 2016, 188, 103-110.	2.6	207
16	Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2204-2214.	5.2	183
17	Asymmetric Trilayer Allâ€Polymer Dielectric Composites with Simultaneous High Efficiency and High Energy Density: A Novel Design Targeting Advanced Energy Storage Capacitors. Advanced Functional Materials, 2021, 31, 2100280.	7.8	179
18	Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. Journal of Materials Chemistry A, 2016, 4, 5149-5158.	5.2	176

#	Article	IF	CITATIONS
19	Electrochemical Supercapacitor Electrodes from Sponge-like Graphene Nanoarchitectures with Ultrahigh Power Density. Journal of Physical Chemistry Letters, 2012, 3, 2928-2933.	2.1	173
20	Selfâ€Recovering Tough Gel Electrolyte with Adjustable Supercapacitor Performance. Advanced Materials, 2014, 26, 4370-4375.	11.1	172
21	Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO ₃ /P(VDF-HFP) composites. Journal of Materials Chemistry A, 2020, 8, 5750-5757.	5.2	170
22	Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon, 2013, 57, 317-328.	5.4	155
23	Bioinspired Mineralization under Freezing Conditions: An Approach to Fabricate Porous Carbons with Complicated Architecture and Superior K ⁺ Storage Performance. ACS Nano, 2019, 13, 11582-11592.	7.3	146
24	Controlled Design of Wellâ€Dispersed Ultrathin MoS ₂ Nanosheets inside Hollow Carbon Skeleton: Toward Fast Potassium Storage by Constructing Spacious "Houses―for K Ions. Advanced Functional Materials, 2020, 30, 1908755.	7.8	138
25	Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 15243-15252.	5.2	132
26	Sulfur-Rich Graphene Nanoboxes with Ultra-High Potassiation Capacity at Fast Charge: Storage Mechanisms and Device Performance. ACS Nano, 2021, 15, 1652-1665.	7.3	132
27	High rate SnO2–Graphene Dual Aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy, 2015, 15, 369-378.	8.2	129
28	Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. Journal of Power Sources, 2010, 195, 3017-3024.	4.0	123
29	Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochimica Acta, 2017, 251, 396-406.	2.6	104
30	Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Research, 2017, 10, 1767-1783.	5.8	103
31	Cobalt Oxide-Carbon Nanosheet Nanoarchitecture as an Anode for High-Performance Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 2882-2890.	4.0	101
32	Sulfur Refines MoO ₂ Distribution Enabling Improved Lithium Ion Battery Performance. Journal of Physical Chemistry C, 2014, 118, 18387-18396.	1.5	100
33	Sodiation vs. lithiation phase transformations in a high rate – high stability SnO ₂ in carbon nanocomposite. Journal of Materials Chemistry A, 2015, 3, 7100-7111.	5.2	100
34	Liquidâ€State Templates for Constructing B, N, Coâ€Doping Porous Carbons with a Boosting of Potassiumâ€Ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.	10.2	99
35	Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105814.	3.8	92
36	Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11569.	5.2	91

#	Article	IF	CITATIONS
37	Layer-structured BaTiO ₃ /P(VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. Journal of Materials Chemistry C, 2020, 8, 10257-10265.	2.7	91
38	Achieving Concurrent High Energy Density and Efficiency in All-Polymer Layered Paraelectric/Ferroelectric Composites via Introducing a Moderate Layer. ACS Applied Materials & Interfaces, 2021, 13, 27522-27532.	4.0	87
39	Preparation of porous doped carbons and the high performance in electrochemical capacitors. Microporous and Mesoporous Materials, 2010, 131, 89-96.	2.2	86
40	Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices. Chemical Engineering Journal, 2021, 421, 129704.	6.6	86
41	High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon, 2009, 47, 2259-2268.	5.4	81
42	Tailoring Biomassâ€Derived Carbon Nanoarchitectures for Highâ€Performance Supercapacitors. ChemElectroChem, 2014, 1, 332-337.	1.7	80
43	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. Nano-Micro Letters, 2021, 13, 59.	14.4	78
44	Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Applied Catalysis B: Environmental, 2010, 97, 284-291.	10.8	75
45	In situ Grown Ni phosphate@Ni ₁₂ P ₅ Nanorod Arrays as a Unique Core–Shell Architecture: Competitive Bifunctional Electrocatalysts for Urea Electrolysis at Large Current Densities. ACS Sustainable Chemistry and Engineering, 2020, 8, 7463-7471.	3.2	75
46	All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage. Journal of Materials Chemistry A, 2018, 6, 18276-18285.	5.2	72
47	Oxygen Engineering Enables N-Doped Porous Carbon Nanofibers as Oxygen Reduction/Evolution Reaction Electrocatalysts for Flexible Zinc–Air Batteries. ACS Catalysis, 2022, 12, 4002-4015.	5.5	68
48	Rigid-Flexible Coupling Carbon Skeleton and Potassium-Carbonate-Dominated Solid Electrolyte Interface Achieving Superior Potassium-Ion Storage. ACS Nano, 2020, 14, 4938-4949.	7.3	67
49	Enabling the full exposure of Fe2P@NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities. Chemical Engineering Journal, 2021, 417, 128067.	6.6	66
50	Modulation of the crystalline/amorphous interface engineering on Ni-P-O-based catalysts for boosting urea electrolysis at large current densities. Chemical Engineering Journal, 2021, 425, 130514.	6.6	65
51	Metal-organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochimica Acta, 2019, 319, 541-551.	2.6	63
52	High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous and Mesoporous Materials, 2017, 241, 202-209.	2.2	62
53	Marine-Biomass-Derived Porous Carbon Sheets with a Tunable N-Doping Content for Superior Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 38376-38386.	4.0	61
54	Waterâ€Soluble Salt Templateâ€Assisted Anchor of Hollow FeS ₂ Nanoparticle Inside 3D Carbon Skeleton to Achieve Fast Potassiumâ€ion Storage. Advanced Energy Materials, 2021, 11, 2101343.	10.2	56

#	Article	IF	CITATIONS
55	Significantly enhanced high permittivity and negative permittivity in Ag/Al2O3/3D-BaTiO3/epoxy metacomposites with unique hierarchical heterogeneous microstructures. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106559.	3.8	54
56	Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott–Schottky electrocatalysts in neutral rechargeable Zn–Air batteries. Journal of Energy Chemistry, 2022, 68, 113-123.	7.1	51
57	Bilayer carbon nanowires/nickel cobalt hydroxides nanostructures for high-performance supercapacitors. Materials Letters, 2020, 263, 127217.	1.3	49
58	Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Research, 2022, 15, 7124-7133.	5.8	49
59	Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide. Carbon, 2009, 47, 820-828.	5.4	48
60	Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Applied Catalysis B: Environmental, 2022, 316, 121674.	10.8	48
61	Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys. Electrochimica Acta, 2016, 188, 210-217.	2.6	47
62	Hierarchical porous carbon obtained using the template of NaOH-treated zeolite \hat{l}^2 and its high performance as supercapacitor. Microporous and Mesoporous Materials, 2010, 133, 106-114.	2.2	43
63	Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustainable Energy and Fuels, 2018, 2, 381-391.	2.5	43
64	Mesoporous flower-like Co 3 O 4 /C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochimica Acta, 2016, 207, 293-300.	2.6	41
65	Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. Microporous and Mesoporous Materials, 2016, 227, 1-8.	2.2	39
66	Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors. Journal of Power Sources, 2017, 361, 182-194.	4.0	39
67	Cellulose-derived carbon-based electrodes with high capacitance for advanced asymmetric supercapacitors. Journal of Power Sources, 2020, 457, 228056.	4.0	39
68	Designing carbon anodes for advanced potassium-ion batteries: Materials, modifications, and mechanisms. , 2022, 1, 100057.		39
69	Squid inks-derived nanocarbons with unique "shell@pearls―structure for high performance supercapacitors. Journal of Power Sources, 2017, 354, 116-123.	4.0	38
70	Polyampholyte-doped aligned polymer hydrogels as anisotropic electrolytes for ultrahigh-capacity supercapacitors. Journal of Materials Chemistry A, 2018, 6, 58-64.	5.2	38
71	Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100â€ ⁻ 000 Cycles Stability with 1% Capacity Fade. ACS Sustainable Chemistry and Engineering, 2019, 7, 2867-2877.	3.2	38
72	Sustainable nitrogen-doped carbon electrodes for use in high-performance supercapacitors and Li-ion capacitors. Sustainable Energy and Fuels, 2020, 4, 1789-1800.	2.5	38

#	Article	IF	CITATIONS
73	Fe ₃ O ₄ nanoplates/carbon network synthesized by in situ pyrolysis of an organic–inorganic layered hybrid as a high-performance lithium-ion battery anode. Journal of Materials Chemistry A, 2015, 3, 14210-14216.	5.2	36
74	Marine microalgaes-derived porous ZnMn 2 O 4 /C microspheres and performance evaluation as Li-ion battery Anode by using different binders. Chemical Engineering Journal, 2017, 308, 1200-1208.	6.6	36
75	Porous hydrogen substituted graphyne for high capacity and ultra-stable sodium ion storage. Journal of Materials Chemistry A, 2019, 7, 11186-11194.	5.2	36
76	Electrospun hetero-CoP/FeP embedded in porous carbon nanofibers: enhanced Na ⁺ kinetics and specific capacity. Nanoscale, 2020, 12, 24477-24487.	2.8	36
77	Sulfur and nitrogen codoped cyanoethyl celluloseâ€derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. , 2022, 4, 986-1001.		36
78	Fibrous Bio-Carbon Foams: A New Material for Lithium-Ion Hybrid Supercapacitors with Ultrahigh Integrated Energy/Power Density and Ultralong Cycle Life. ACS Sustainable Chemistry and Engineering, 2018, 6, 14989-15000.	3.2	35
79	Large-scale doping-engineering enables boron/nitrogen dual-doped porous carbon for high-performance zinc ion capacitors. Rare Metals, 2022, 41, 2505-2516.	3.6	35
80	Balanced mesoporous nickle cobaltite-graphene and doped carbon electrodes for high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2017, 326, 401-410.	6.6	34
81	Boosting pseudocapacitive charge storage in <i>in situ</i> functionalized carbons with a high surface area for high-energy asymmetric supercapacitors. Sustainable Energy and Fuels, 2018, 2, 2314-2324.	2.5	34
82	Nitrogen and Sulfur Co-doped Mesoporous Carbon for Sodium Ion Batteries. ACS Applied Nano Materials, 2019, 2, 5643-5654.	2.4	33
83	A facile liquid/liquid interface method to synthesize graphyne analogs. Chemical Communications, 2019, 55, 6571-6574.	2.2	33
84	Chemical Modification of the spâ€Hybridized Carbon Atoms of Graphdiyne by Using Organic Sulfur. Chemistry - A European Journal, 2019, 25, 5643-5647.	1.7	33
85	Improved electrochemical performance of hierarchical porous carbon/polyaniline composites. Electrochimica Acta, 2012, 74, 98-104.	2.6	32
86	Controllable preparation of an eggshell membrane supported hydrogel electrolyte with thickness-dependent electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 17933-17938.	5.2	32
87	Dual-doped hierarchical porous carbon derived from biomass for advanced supercapacitors and lithium ion batteries. RSC Advances, 2019, 9, 32382-32394.	1.7	32
88	High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. Journal of Materials Science, 2018, 53, 6763-6773.	1.7	31
89	High potassium ion storage capacity with long cycling stability of sustainable oxygen-rich carbon nanosheets. Nanoscale, 2021, 13, 2389-2398.	2.8	30
90	All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy and Environment, 2023, 8, 1091-1101.	4.7	30

#	Article	IF	CITATIONS
91	Template-assisted loading of Fe ₃ O ₄ nanoparticles inside hollow carbon "rooms―to achieve high volumetric lithium storage. Nanoscale, 2020, 12, 10816-10826.	2.8	27
92	N,P-Doped Carbon-Based Freestanding Electrodes Enabled by Cellulose Nanofibers for Superior Asymmetric Supercapacitors. ACS Applied Energy Materials, 2021, 4, 2327-2338.	2.5	26
93	Elastic ionogels with freeze-aligned pores exhibit enhanced electrochemical performances as anisotropic electrolytes of all-solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 15408-15412.	5.2	24
94	High temperature oxidation and inter-diffusion behavior of electroplated Ni–Re diffusion barriers between NiCoCrAlY coating and orthorhombic-Ti 2 AlNb alloy. Corrosion Science, 2016, 102, 200-208.	3.0	24
95	Bio-derived 3D TiO ₂ hollow spheres with a mesocrystal nanostructure to achieve improved electrochemical performance of Na-ion batteries in ether-based electrolytes. Journal of Materials Chemistry A, 2019, 7, 3399-3407.	5.2	24
96	T-Nb ₂ O ₅ embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors. Sustainable Energy and Fuels, 2019, 3, 1055-1065.	2.5	23
97	Engineering solid–liquid-gas interfaces of single-atom cobalt catalyst for enhancing the robust stability of neutral Zn-air batteries under high current density. Chemical Engineering Journal, 2022, 433, 133685.	6.6	23
98	Spatially Confined "Edgeâ€ŧoâ€Edge―Strategy for Achieving Compact Na ⁺ /K ⁺ Storage: Constructing Heteroâ€Ni/Ni ₃ S ₂ in Densified Carbons. Advanced Functional Materials, 2022, 32, .	7.8	23
99	Two-dimensional SnO ₂ anchored biomass-derived carbon nanosheet anode for high-performance Li-ion capacitors. RSC Advances, 2021, 11, 10018-10026.	1.7	20
100	Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor. RSC Advances, 2017, 7, 17178-17183.	1.7	19
101	Nitrogen functionalized carbon nanocages optimized as high-performance anodes for sodium ion storage. Electrochimica Acta, 2019, 304, 192-201.	2.6	19
102	Nitrogen and Oxygen Coâ€Doping Assisted Synthesis of Highly Dispersed Pd Nanoparticles on Hollow Carbon Spheres as Efficient Electrocatalysts for Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 12589-12595.	1.7	19
103	Biomass derived fabrication of a novel sea cucumber-like LiMn 2 O 4 /C composite with a hierarchical porous structure as the cathode for lithium-ion batteries. Electrochimica Acta, 2016, 188, 645-652.	2.6	18
104	A Comparative Study of the Microstructure, Mechanical Properties and Corrosion Resistance of Ni- or Fe- Based Composite Coatings by Laser Cladding. Journal of Materials Engineering and Performance, 2018, 27, 2844-2854.	1.2	18
105	Effective Stabilization of Long-Cycle Lithium–Sulfur Batteries Utilizing In Situ Prepared Graphdiyne-Modulated Separators. ACS Sustainable Chemistry and Engineering, 2020, 8, 1741-1750.	3.2	17
106	A new strategy for achieving high K ⁺ storage capacity with fast kinetics: realizing covalent sulfur-rich carbon by phosphorous doping. Nanoscale, 2021, 13, 4911-4920.	2.8	17
107	Concurrently Achieving High Discharged Energy Density and Efficiency in Composites by Introducing Ultralow Loadings of Core–Shell Structured Graphene@TiO ₂ Nanoboxes. ACS Applied Materials & Interfaces, 2022, 14, 29292-29301.	4.0	17
108	Constructing MoO ₂ Porous Architectures Using Graphene Oxide Flexible Supports for Lithium Ion Battery Anodes. Global Challenges, 2017, 1, 1700050.	1.8	16

#	Article	IF	CITATIONS
109	Novel hybrid anode of MnO nanoparticles and ultrathin carbon sheets for high lithium storage performance. Journal of Alloys and Compounds, 2018, 740, 375-381.	2.8	16
110	Optimizing Strategy for the Dielectric Performance of Topological-structured Polymer Nanocomposites by Rationally Tailoring the Spatial Distribution of Nanofillers. Engineered Science, 2020, , .	1.2	16
111	An unusual method to prepare a highly microporous carbon for hydrogen storage application. Materials Letters, 2013, 100, 227-229.	1.3	15
112	High-Performance Sodium-Ion Capacitor Constructed by Well-Matched Dual-Carbon Electrodes from a Single Biomass. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	14
113	One-pot synthesis of nanosized MnO incorporated into N-doped carbon nanosheets for high performance lithium storage. Journal of Alloys and Compounds, 2022, 902, 163827.	2.8	14
114	Biogelâ€Derived Polycrystalline MnO Spheres/Sâ€Doped Carbon Composites with Enhanced Performance as Anode Materials for Lithiumâ€lon Batteries. ChemElectroChem, 2017, 4, 1411-1418.	1.7	12
115	Non-carbon coating: a new strategy for improving lithium ion storage of carbon matrix. Green Chemistry, 2018, 20, 3954-3962.	4.6	12
116	Carbon coated 3D Nb ₂ O ₅ hollow nanospheres with superior performance as an anode for high energy Li-ion capacitors. Sustainable Energy and Fuels, 2020, 4, 4868-4877.	2.5	12
117	Boosting capacitance and energy density by construction NiCoO2/CoS2 nanocomposites arrays as pseudocapacitor. Journal of Alloys and Compounds, 2021, 881, 160627.	2.8	12
118	Coupling core–shell Bi@Void@TiO ₂ heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. Journal of Materials Chemistry A, 2022, 10, 12908-12920.	5.2	12
119	Metal Organic Frameworks Enabled Multifunctional Poly(ethylene oxide)-Based Solid Polymer Electrolytes with High Lithium-Ion Conductivity and Excellent Stability. ACS Applied Energy Materials, 2022, 5, 8973-8981.	2.5	12
120	High lithium anodic performance of flower-like carbon nanoflakes derived from MOF based on double ligands. Journal of Alloys and Compounds, 2019, 806, 520-528.	2.8	11
121	High-rate sodium storage performance enabled using hollow Co3O4 nanoparticles anchored in porous carbon nanofibers anode. Journal of Alloys and Compounds, 2021, 868, 159262.	2.8	11
122	Tailorable high-k and negative-k percolation behaviors in PPy/P(VDF-HFP) composites. Composites Communications, 2021, 28, 100945.	3.3	11
123	Carbonized Chicken Eggshell Membranes with 3D Architectures as High-Performance Electrode Materials for Supercapacitors (Adv. Energy Mater. 4/2012). Advanced Energy Materials, 2012, 2, 430-430.	10.2	10
124	Spaceâ€Confined Fabrication of MoS ₂ @Carbon Tubes with Semienclosed Architecture Achieving Superior Cycling Capability for Sodium Ion Storage. Advanced Materials Interfaces, 2020, 7, 2000953.	1.9	10
125	Nitrate Salt Assisted Fabrication of Highly N-Doped Carbons for High-Performance Sodium Ion Capacitors. ACS Applied Energy Materials, 0, , .	2.5	9
126	Bio-derived yellow porous TiO ₂ : the lithiation induced activation of an oxygen-vacancy dominated TiO ₂ lattice evoking a large boost in lithium storage performance. Nanoscale, 2020, 12, 746-754.	2.8	9

#	Article	IF	CITATIONS
127	Resol and urea derived N-doped porous carbon for Na-ion storage. Materials Chemistry and Physics, 2020, 254, 123535.	2.0	9
128	Microzone-explosion synthesis of porous carbon electrodes for advanced aqueous solid-state supercapacitors with a high-voltage gel electrolyte. Journal of Energy Chemistry, 2021, 60, 95-103.	7.1	9
129	A low-cost and one-step synthesis of a novel hierarchically porous Fe ₃ O ₄ /C composite with exceptional porosity and superior Li ⁺ storage performance. RSC Advances, 2015, 5, 102993-102999.	1.7	7
130	Squid Inkâ€Assisted Fabricating MoS ₂ Nanosheets/Ultrafine Biocarbon Spheres Composites with an Enhanced Lithium Ion Storage Performance. ChemistrySelect, 2017, 2, 8643-8649.	0.7	7
131	Triconstituent co-assembly to hierarchically porous carbons as high-performance anodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 771, 140-146.	2.8	7
132	Morphological modulation of CoFe-based metal organic frameworks for oxygen evolution reaction. Catalysis Communications, 2022, 165, 106445.	1.6	7
133	Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors. Journal of Materials Science, 2019, 54, 7811-7822.	1.7	6
134	Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability. New Carbon Materials, 2021, 36, 167-178.	2.9	6
135	Interconnected honeycomb-like carbon with rich nitrogen/sulfur doping for stable potassium ion storage. Electrochimica Acta, 2022, 424, 140596.	2.6	6
136	The hierarchical cobalt oxide-porous carbons composites and their high performance as an anode for lithium ion batteries enhanced by the excellent synergistic effect. Electrochimica Acta, 2017, 231, 511-520.	2.6	5
137	Evolution of "adsorption–insertion―K+ storage behaviors in flower-like carbons with tunable heteroatom doping and graphitic structures. Sustainable Energy and Fuels, 0, , .	2.5	4
138	Improving the electron transfer in the oxygen reduction reaction by N/S co-doping for high-performance of Zn–air batteries. Sustainable Energy and Fuels, 2022, 6, 3383-3393.	2.5	4
139	Tailored MoS2 bilayer grafted onto N/S-doped carbon for ultra-stable potassium-ion capacitor. Chemical Engineering Journal, 2022, 450, 137815.	6.6	4
140	Tailoring Biomass-Derived Carbon Nanoarchitectures for High-Performance Supercapacitors. ChemElectroChem, 2014, 1, 302-302.	1.7	2
141	Chemical Modification of the spâ€Hybridized Carbon Atoms of Graphdiyne by Using Organic Sulfur. Chemistry - A European Journal, 2019, 25, 5599-5599.	1.7	2
142	Cable-like heterogeneous porous carbon fibers with ultrahigh-rate capability and long cycle life for fast charging lithium-ion storage devices. Nanoscale, 2019, 11, 20893-20902.	2.8	1
143	Enhanced Hydrogen Storage Capacity of Nanosized Copper Loaded Active Carbons Treated Under CO ₂ . Journal of Nanoscience and Nanotechnology, 2010, 10, 7648-7653.	0.9	0
144	Influence of thermal annealing on the microstructure, hardness and corrosion behavior of TiAlSiCuN nanocomposite films. Surface and Interface Analysis, 2016, 48, 1310-1315.	0.8	0