## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1541512/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Directly Synthesized Strong, Highly Conducting, Transparent Single-Walled Carbon Nanotube Films.<br>Nano Letters, 2007, 7, 2307-2311.                                                                                               | 4.5  | 334       |
| 2  | Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy and Environmental Science, 2011, 4, 1440.                                                                                          | 15.6 | 310       |
| 3  | Macroscopic Carbon Nanotube Assemblies: Preparation, Properties, and Potential Applications. Small, 2011, 7, 1504-1520.                                                                                                             | 5.2  | 291       |
| 4  | High-Strength Composite Fibers: Realizing True Potential of Carbon Nanotubes in Polymer Matrix<br>through Continuous Reticulate Architecture and Molecular Level Couplings. Nano Letters, 2009, 9,<br>2855-2861.                    | 4.5  | 242       |
| 5  | Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas. Physical Review<br>Letters, 2015, 115, 064801.                                                                                                  | 2.9  | 168       |
| 6  | Superfast-Response and Ultrahigh-Power-Density Electromechanical Actuators Based on Hierarchal<br>Carbon Nanotube Electrodes and Chitosan. Nano Letters, 2011, 11, 4636-4641.                                                       | 4.5  | 142       |
| 7  | Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers. Advanced<br>Materials, 2009, 21, 603-608.                                                                                                      | 11.1 | 138       |
| 8  | Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers. Nano<br>Letters, 2006, 6, 2375-2378.                                                                                                      | 4.5  | 130       |
| 9  | Synthesis, Structure, and Properties of Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2009, 21,<br>4565-4583.                                                                                                                | 11.1 | 123       |
| 10 | A Repeated Halving Approach to Fabricate Ultrathin Singleâ€Walled Carbon Nanotube Films for<br>Transparent Supercapacitors. Small, 2013, 9, 518-524.                                                                                | 5.2  | 96        |
| 11 | A laser-driven nanosecond proton source for radiobiological studies. Applied Physics Letters, 2012, 101, .                                                                                                                          | 1.5  | 87        |
| 12 | Laser Acceleration of Highly Energetic Carbon lons Using a Double-Layer Target Composed of Slightly<br>Underdense Plasma and Ultrathin Foil. Physical Review Letters, 2019, 122, 014803.                                            | 2.9  | 84        |
| 13 | Highly Dense and Perfectly Aligned Single-Walled Carbon Nanotubes Fabricated by Diamond Wire<br>Drawing Dies. Nano Letters, 2008, 8, 1071-1075.                                                                                     | 4.5  | 70        |
| 14 | Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical<br>Vapor Deposition. Advanced Materials, 2006, 18, 1817-1821.                                                                         | 11.1 | 57        |
| 15 | Highly Efficient Direct Electrodeposition of Coâ ̈Cu Alloy Nanotubes in an Anodic Alumina Template.<br>Journal of Physical Chemistry C, 2008, 112, 2256-2261.                                                                       | 1.5  | 52        |
| 16 | Synthesis of large-scale periodic ZnO nanorod arrays and its blue-shift of UV luminescence. Journal of Materials Chemistry, 2009, 19, 962-969.                                                                                      | 6.7  | 48        |
| 17 | Introducing the fission–fusion reaction process: using aÂlaser-accelerated Th beam to produce<br>neutron-rich nuclei towards the N=126 waiting point of the r-process. Applied Physics B: Lasers and<br>Optics, 2011, 103, 471-484. | 1.1  | 46        |
| 18 | Dependence of Laser-Driven Coherent Synchrotron Emission Efficiency on Pulse Ellipticity and Implications for Polarization Gating. Physical Review Letters, 2014, 112, 123902.                                                      | 2.9  | 45        |

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube<br>arrays. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149,<br>41-46.                                                                     | 1.7 | 44        |
| 20 | Temperature dependence of Raman spectra in single-walled carbon nanotube rings. Applied Physics<br>Letters, 2008, 92, 121905.                                                                                                                                                          | 1.5 | 44        |
| 21 | Axial Compression of Hierarchically Structured Carbon Nanotube Fiber Embedded in Epoxy. Advanced<br>Functional Materials, 2010, 20, 3797-3803.                                                                                                                                         | 7.8 | 43        |
| 22 | A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays. Nanotechnology, 2007, 18, 405303.                                                                                                                                                                      | 1.3 | 42        |
| 23 | Highâ€Strength Laminated Copper Matrix Nanocomposites Developed from a Singleâ€Walled Carbon<br>Nanotube Film with Continuous Reticulate Architecture. Advanced Functional Materials, 2012, 22,<br>5209-5215.                                                                          | 7.8 | 40        |
| 24 | Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse. Physics of Plasmas, 2013, 20, .                                                                                                                                      | 0.7 | 35        |
| 25 | Cascaded generation of isolated sub-10 attosecond half-cycle pulses. New Journal of Physics, 2021, 23, 053003.                                                                                                                                                                         | 1.2 | 34        |
| 26 | Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for<br>laser-driven ion acceleration. Nuclear Instruments and Methods in Physics Research, Section A:<br>Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 655, 53-56. | 0.7 | 32        |
| 27 | High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.<br>Nanoscale, 2011, 3, 3731.                                                                                                                                                                   | 2.8 | 31        |
| 28 | Coulomb Explosion: A Novel Approach to Separate Single-Walled Carbon Nanotubes from Their<br>Bundle. Nano Letters, 2009, 9, 239-244.                                                                                                                                                   | 4.5 | 25        |
| 29 | An automated, 0.5ÂHz nano-foil target positioning system for intense laser plasma experiments. High<br>Power Laser Science and Engineering, 2017, 5, .                                                                                                                                 | 2.0 | 25        |
| 30 | Super-Heavy Ions Acceleration Driven by Ultrashort Laser Pulses at Ultrahigh Intensity. Physical Review X, 2021, 11, .                                                                                                                                                                 | 2.8 | 23        |
| 31 | Bright Subcycle Extreme Ultraviolet Bursts from a Single Dense Relativistic Electron Sheet. Physical<br>Review Letters, 2014, 113, 235002.                                                                                                                                             | 2.9 | 22        |
| 32 | Detection and analysis of laser driven proton beams by calibrated Gafchromic HD-V2 and MD-V3 radiochromic films. Review of Scientific Instruments, 2019, 90, 033306.                                                                                                                   | 0.6 | 21        |
| 33 | Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level. Matter and Radiation at Extremes, 2021, 6, .                                                                                                                      | 1.5 | 21        |
| 34 | The generation of collimated <i>Ĵ³</i> -ray pulse from the interaction between 10 PW laser and a narrow tube target. Applied Physics Letters, 2018, 112, .                                                                                                                             | 1.5 | 19        |
| 35 | Growth of ultrafine ZnS nanowires. Nanotechnology, 2007, 18, 145607.                                                                                                                                                                                                                   | 1.3 | 18        |
| 36 | On the small divergence of laser-driven ion beams from nanometer thick foils. Physics of Plasmas, 2013, 20, .                                                                                                                                                                          | 0.7 | 17        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Efficiently producing single-walled carbon nanotube rings and investigation of their field emission properties. Nanotechnology, 2006, 17, 2355-2361.                            | 1.3 | 16        |
| 38 | Enhanced laser proton acceleration by target ablation on a femtosecond laser system. Physics of Plasmas, 2018, 25, 063109.                                                      | 0.7 | 16        |
| 39 | Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction. Physical<br>Review E, 2014, 89, 013107.                                             | 0.8 | 14        |
| 40 | Large photocurrent generated by a camera flash in single-walled carbon nanotubes. Journal Physics D:<br>Applied Physics, 2007, 40, 6898-6901.                                   | 1.3 | 13        |
| 41 | Beam Line Design of Compact Laser Plasma Accelerator. Chinese Physics Letters, 2017, 34, 054101.                                                                                | 1.3 | 13        |
| 42 | Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.<br>Scientific Reports, 2018, 8, 2536.                                        | 1.6 | 12        |
| 43 | Proton beams from intense laser-solid interaction: Effects of the target materials. Matter and<br>Radiation at Extremes, 2020, 5, .                                             | 1.5 | 12        |
| 44 | Ion wave breaking acceleration. Physical Review Accelerators and Beams, 2016, 19, .                                                                                             | 0.6 | 12        |
| 45 | Template synthesis, characterization and magnetic property of Fe nanowires-filled amorphous carbon<br>nanotubes array. Journal Physics D: Applied Physics, 2006, 39, 3939-3944. | 1.3 | 10        |
| 46 | Batchwise Growth of Silica Cone Patterns via Self-Assembly of Aligned Nanowires. Small, 2007, 3,<br>444-450.                                                                    | 5.2 | 10        |
| 47 | Additional curvature-induced Raman splitting in carbon nanotube ring structures. Physical Review B, 2009, 80, .                                                                 | 1.1 | 10        |
| 48 | Structural, Magnetic, and Magnetoresistive Properties of Electrodeposited Ni5Zn21Alloy Nanowires.<br>Journal of Physical Chemistry B, 2006, 110, 20158-20165.                   | 1.2 | 9         |
| 49 | Target fabrication for laser-ion acceleration research at the Technological Laboratory of the LMU<br>Munich. Matter and Radiation at Extremes, 2019, 4, 035201.                 | 1.5 | 9         |
| 50 | ZnS/Zn2SnO4 biaxial nanowire heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1435-1440.                                                      | 1.3 | 7         |
| 51 | An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams. Physics in Medicine and Biology, 2017, 62, 5200-5212.                     | 1.6 | 7         |
| 52 | Generation of bright γ-ray/hard x-ray flash with intense femtosecond pulses and double-layer targets.<br>Physics of Plasmas, 2019, 26, .                                        | 0.7 | 7         |
| 53 | Influence factors of resolution in laser accelerated proton radiography and image deblurring. AIP Advances, 2021, 11, .                                                         | 0.6 | 6         |
| 54 | Secondary growth of small ZnO tripodlike arms on the end of nanowires. Applied Physics Letters, 2007, 91, 013106.                                                               | 1.5 | 5         |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Large Third-Order Optical Nonlinearity in Directly Synthesized Single-Walled Carbon Nanotube Films.<br>Journal of Nanoscience and Nanotechnology, 2010, 10, 7333-7335.                 | 0.9 | 5         |
| 56 | Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses. Physics of Plasmas, 2016, 23, 083109.              | 0.7 | 5         |
| 57 | Commissioning experiment of the high-contrast SILEX-â; multi-petawatt laser facility. Matter and Radiation at Extremes, 2021, 6, .                                                     | 1.5 | 5         |
| 58 | Autofocused, enhanced proton acceleration from a nanometer-scale bulged foil. Physics of Plasmas, 2010, 17, .                                                                          | 0.7 | 4         |
| 59 | Title is missing!. Acta Physica Polonica B, 2011, 42, 843.                                                                                                                             | 0.3 | 4         |
| 60 | Surface-Enhanced/Normal Raman Scattering Studies on an Isolated and Individual Single-Walled<br>Carbon Nanotube. Journal of Nanoscience and Nanotechnology, 2009, 9, 1308-1311.        | 0.9 | 3         |
| 61 | Low-Temperature, Directly Depositing Individual Single-Walled Carbon Nanotubes for Fabrication of Suspended Nanotube Devices. Journal of Physical Chemistry C, 2013, 117, 16256-16262. | 1.5 | 2         |
| 62 | Using Target Ablation for Ion Beam Quality Improvement. Chinese Physics Letters, 2016, 33, 035202.                                                                                     | 1.3 | 2         |
| 63 | Template Synthesis and Growth Mechanism of Metal Nanowire/Carbon Nanotube Heterojunctions.<br>Journal of Nanoscience and Nanotechnology, 2010, 10, 7583-7586.                          | 0.9 | 1         |
| 64 | Laser Ion Acceleration: Status and Perspectives for Fusion. EPJ Web of Conferences, 2011, 17, 11001.                                                                                   | 0.1 | 1         |
| 65 | Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration. , 2011, , .                                                                         |     | 1         |
| 66 | Novel Resistance Behavior of Single-Walled Carbon Nanotubes Under Large Currents. Journal of Nanoscience and Nanotechnology, 2009, 9, 1357-1360.                                       | 0.9 | 0         |