
Indrajeet Chaubey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1541169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple regression analysis for predicting few water quality parameters at unmonitored sub-watershed outlets in the St. Joseph River basin, USA. Geocarto International, 2022, 37, 8697-8723.	1.7	3
2	Impact of water conservation structures on the agricultural productivity in the context of climate change. Water Resources Management, 2022, 36, 1627-1644.	1.9	6
3	Tillage-induced surface soil roughness controls the chemistry and physics of eroded particles at early erosion stage. Soil and Tillage Research, 2021, 207, 104807.	2.6	18
4	A multistate first-order Markov model for modeling time distribution of extreme rainfall events. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1205-1221.	1.9	4
5	Evaluating soil water routing approaches in watershedâ€scale, ecohydrologic modelling. Hydrological Processes, 2021, 35, e14034.	1.1	3
6	Climate change impacts and strategies for adaptation for water resource management in Indiana. Climatic Change, 2021, 165, 1.	1.7	9
7	Long-term performance of three mesophilic anaerobic digesters to convert animal and agro-industrial wastes into organic fertilizer. Journal of Cleaner Production, 2021, 307, 127271.	4.6	6
8	Strong sensitivity of watershed-scale, ecohydrologic model predictions to soil moisture. Environmental Modelling and Software, 2021, 144, 105162.	1.9	4
9	Hydrologic Responses to Climate Variability and Human Activities in Lake Ziway Basin, Ethiopia. Water (Switzerland), 2020, 12, 164.	1.2	31
10	Uncertainty of hydrologic simulation, and its impact on the design and the effectiveness of water conservation structures. Stochastic Environmental Research and Risk Assessment, 2020, 34, 973-991.	1.9	5
11	An improved process-based representation of stream solute transport in the soil and water assessment tools. Hydrological Processes, 2020, 34, 2599-2611.	1.1	7
12	Developing an improved user interface for a physically-based stream solute transport model. Environmental Modelling and Software, 2020, 129, 104715.	1.9	6
13	Designing bioenergy landscapes to protect water quality. Biomass and Bioenergy, 2019, 128, 105327.	2.9	15
14	Fuzzy inference system for site suitability evaluation of water harvesting structures in rainfed regions. Agricultural Water Management, 2019, 218, 82-93.	2.4	32
15	Simple regression models can act as calibration-substitute to approximate transient storage parameters in streams. Advances in Water Resources, 2019, 123, 201-209.	1.7	9
16	Evaluating Agricultural BMP Effectiveness in Improving Freshwater Provisioning Under Changing Climate. Water Resources Management, 2019, 33, 453-473.	1.9	8
17	Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution. Journal of Environmental Management, 2018, 212, 198-209.	3.8	32
18	Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: Framework development and demonstration using a Bayesian method. Journal of Hydrology, 2018, 560, 530-545.	2.3	49

#	Article	IF	CITATIONS
19	Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Science of the Total Environment, 2018, 613-614, 724-735.	3.9	49
20	Precision Conservation for Biofuel Production. Agronomy, 2018, , 253-283.	0.2	2
21	Control of tillage disturbance on the chemistry and proportion of raindrop-liberated particles from soil aggregates. Geoderma, 2018, 330, 19-29.	2.3	22
22	Parameter estimation of SWAT and quantification of consequent confidence bands of model simulations. Environmental Earth Sciences, 2018, 77, 1.	1.3	14
23	An Improved Representation of Vegetative Filter Strips in SWAT. Transactions of the ASABE, 2018, 61, 1017-1024.	1.1	12
24	Perennial biomass production from marginal land in the Upper Mississippi River Basin. Land Degradation and Development, 2018, 29, 1748-1755.	1.8	21
25	Hydrologic design of water harvesting structures through simulation-optimization framework. Journal of Hydrology, 2018, 563, 460-469.	2.3	9
26	SWATMODâ€Prep: Graphical User Interface for Preparing Coupled SWATâ€MODFLOW Simulations. Journal of the American Water Resources Association, 2017, 53, 400-410.	1.0	47
27	Marginal land suitability for switchgrass, Miscanthus and hybrid poplar in the Upper Mississippi River Basin (UMRB). Environmental Modelling and Software, 2017, 93, 356-365.	1.9	45
28	Development of a hydrological model for simulation of runoff from catchments unbounded by ridge lines. Journal of Hydrology, 2017, 551, 423-439.	2.3	11
29	A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Science of the Total Environment, 2017, 601-602, 580-593.	3.9	209
30	Integrated Economic and Environmental Assessment of Cellulosic Biofuel Production in an Agricultural Watershed. Bioenergy Research, 2017, 10, 509-524.	2.2	16
31	Impact of a two-stage ditch on channel water quality. Agricultural Water Management, 2017, 192, 126-137.	2.4	28
32	Water Quality Assessment of Largeâ€scale Bioenergy Cropping Scenarios for the Upper Mississippi and Ohioâ€Tennessee River Basins. Journal of the American Water Resources Association, 2017, 53, 1355-1367.	1.0	24
33	Influence of Bioenergy Crop Production and Climate Change on Ecosystem Services. Journal of the American Water Resources Association, 2017, 53, 1323-1335.	1.0	6
34	Implications of spatial and temporal variations in effects of conservation practices on water management strategies. Agricultural Water Management, 2017, 180, 252-266.	2.4	27
35	Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt. Agricultural Water Management, 2017, 180, 280-296.	2.4	44
36	Policy Implications from Multiâ€scale Watershed Models of Biofuel Crop Adoption across the Corn Belt. Journal of the American Water Resources Association, 2017, 53, 1313-1322.	1.0	10

#	Article	IF	CITATIONS
37	Assessment of Bioenergy Cropping Scenarios for the Boone River Watershed in North Central Iowa, United States. Journal of the American Water Resources Association, 2017, 53, 1336-1354.	1.0	17
38	Comparative Analysis of HRU and Grid-Based SWAT Models. Water (Switzerland), 2017, 9, 272.	1.2	36
39	Surface and Subsurface Transport of Nitrate Loss from the Selected Bioenergy Crop Fields: Systematic Review, Analysis and Future Directions. Agriculture (Switzerland), 2017, 7, 27.	1.4	10
40	Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin. International Journal of Environmental Research and Public Health, 2017, 14, 496.	1.2	29
41	Simulating Establishment Periods of Switchgrass and Miscanthus in the Soil and Water Assessment Tool (SWAT). Transactions of the ASABE, 2017, 60, 1621-1632.	1.1	5
42	Comparison of Computer Models for Estimating Hydrology and Water Quality in an Agricultural Watershed. Water Resources Management, 2017, 31, 3641-3665.	1.9	7
43	Evaluation of Freshwater Provisioning for Different Ecosystem Services in the Upper Mississippi River Basin: Current Status and Drivers. Water (Switzerland), 2016, 8, 288.	1.2	6
44	Developing a Comprehensive Spectral-Biogeochemical Database of Midwestern Rivers for Water Quality Retrieval Using Remote Sensing Data: A Case Study of the Wabash River and Its Tributary, Indiana. Remote Sensing, 2016, 8, 517.	1.8	11
45	Delineating floodplain and upland areas for hydrologic models: a comparison of methods. Hydrological Processes, 2016, 30, 4367-4383.	1.1	17
46	Comparing two tools for ecosystem service assessments regarding water resources decisions. Journal of Environmental Management, 2016, 177, 331-340.	3.8	88
47	Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environmental Modelling and Software, 2016, 80, 281-296.	1.9	113
48	Development and Comparison of Multiple Regression Models to Predict Bankfull Channel Dimensions for Use in Hydrologic Models. Journal of the American Water Resources Association, 2016, 52, 1385-1400.	1.0	8
49	Effect of conservation practices implemented by USDA programs at field and watershed scales. Journal of Soils and Water Conservation, 2016, 71, 249-266.	0.8	41
50	Evaluating potential water quality drivers of a fish regime shift in the Wabash River using the SWAT model. Ecological Modelling, 2016, 340, 116-125.	1.2	13
51	Sensitivity and Uncertainty Analysis of the L-THIA-LID 2.1 Model. Water Resources Management, 2016, 30, 4927-4949.	1.9	15
52	Predictions in ungauged basins: an approach for regionalization of hydrological models considering the probability distribution of model parameters. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1131-1149.	1.9	38
53	Watershedâ€scale impacts of bioenergy crops on hydrology and water quality using improved <scp>SWAT</scp> model. GCB Bioenergy, 2016, 8, 837-848.	2.5	76
54	Water quality estimation of River plumes in Southern Lake Michigan using Hyperion. Journal of Great Lakes Research, 2016, 42, 524-535.	0.8	13

#	Article	IF	CITATIONS
55	Bauxite Residue for Phosphorus Removal from Waste Water. , 2016, , 11-16.		Ο
56	Hydrologic and water quality impacts and biomass production potential on marginal land. Environmental Modelling and Software, 2015, 72, 230-238.	1.9	41
57	Adaptive Targeting: Engaging Farmers to Improve Targeting and Adoption of Agricultural Conservation Practices. Journal of the American Water Resources Association, 2015, 51, 973-991.	1.0	21
58	Spatial Optimization of Six Conservation Practices Using Swat inÂTileâ€Drained Agricultural Watersheds. Journal of the American Water Resources Association, 2015, 51, 956-972.	1.0	42
59	Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrological Processes, 2015, 29, 4220-4237.	1.1	99
60	A computationally efficient approach for watershed scale spatial optimization. Environmental Modelling and Software, 2015, 66, 1-11.	1.9	40
61	Ecosystem services and Indiana agriculture: farmers' and conservationists' perceptions. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 264-282.	2.9	17
62	Using hyperspectral data to quantify water-quality parameters in the Wabash River and its tributaries, Indiana. International Journal of Remote Sensing, 2015, 36, 5466-5484.	1.3	22
63	A web tool for STORET/WQX water quality data retrieval and Best Management Practice scenario suggestion. Journal of Environmental Management, 2015, 150, 21-27.	3.8	3
64	Perennial rhizomatous grasses as bioenergy feedstock in SWAT : parameter development and model improvement. GCB Bioenergy, 2015, 7, 1185-1202.	2.5	56
65	Comparing the Selection and Placement of Best Management Practices in Improving Water Quality Using a Multiobjective Optimization and Targeting Method. International Journal of Environmental Research and Public Health, 2014, 11, 2992-3014.	1.2	33
66	An In-depth Examination of Farmers' Perceptions of Targeting Conservation Practices. Environmental Management, 2014, 54, 795-813.	1.2	38
67	Evaluating, interpreting, and communicating performance of hydrologic/water quality models considering intended use: A review and recommendations. Environmental Modelling and Software, 2014, 57, 40-51.	1.9	110
68	How Do Land-Use and Climate Change Affect Watershed Health? A Scenario-Based Analysis. Water Quality, Exposure, and Health, 2014, 6, 19-33.	1.5	40
69	Application of distributed hydrological models for predictions in ungauged basins: a method to quantify predictive uncertainty. Hydrological Processes, 2014, 28, 2033-2045.	1.1	37
70	Modeling Water Quality Impacts of Cellulosic Biofuel Production from Corn Silage. Bioenergy Research, 2014, 7, 636-653.	2.2	3
71	Assessing SWAT's performance in the Kaskaskia River watershed as influenced by the number of calibration stations used. Hydrological Processes, 2014, 28, 676-687.	1.1	31
72	Modeling Water Quality Impacts of Growing Corn, Switchgrass, and <i>Miscanthus</i> on Marginal Soils. Journal of Water Resource and Protection, 2014, 06, 1352-1368.	0.3	18

#	Article	IF	CITATIONS
73	IMPACT OF LAND USE CHANGE ON EROSION RISK: AN INTEGRATED REMOTE SENSING, GEOGRAPHIC INFORMATION SYSTEM AND MODELING METHODOLOGY. Land Degradation and Development, 2013, 24, 409-421.	1.8	118
74	A quantitative approach to evaluating ecosystem services. Ecological Modelling, 2013, 257, 57-65.	1.2	108
75	Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of Environmental Management, 2013, 119, 151-161.	3.8	173
76	Estimation of annual baseflow at ungauged sites in Indiana USA. Journal of Hydrology, 2013, 476, 13-27.	2.3	75
77	Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy. Environmental Science & Technology, 2013, 47, 1784-1791.	4.6	53
78	Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. Journal of Hydrology, 2013, 499, 275-288.	2.3	74
79	An Optimization Method for Estimating Constituent Mean Concentrations in Base Flowâ€Dominated Flow. Journal of the American Water Resources Association, 2013, 49, 1167-1178.	1.0	3
80	Watershed modeling using large-scale distributed computing in Condor and the Soil and Water Assessment Tool model. Simulation, 2012, 88, 365-380.	1.1	6
81	Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water, Air, and Soil Pollution, 2012, 223, 4253-4273.	1.1	581
82	Representation and Evaluation of Low Impact Development Practices with L-THIA-LID: An Example for Site Planning. Environment and Pollution, 2012, 1, .	0.2	52
83	Implementation of BMP Strategies for Adaptation to Climate Change and Land Use Change in a Pasture-Dominated Watershed. International Journal of Environmental Research and Public Health, 2012, 9, 3654-3684.	1.2	32
84	A Geospatial Approach to Targeting Constructed Wetlands for Nitrate Removal in Agricultural Watersheds. Applied Engineering in Agriculture, 2012, 28, 347-357.	0.3	10
85	Periphyton Nutrient Limitation and Maximum Potential Productivity in the Beaver Lake Basin, United States ¹ . Journal of the American Water Resources Association, 2012, 48, 896-908.	1.0	1
86	Development of Web-based Load Duration Curve system for analysis of total maximum daily load and water quality characteristics in a waterbody. Journal of Environmental Management, 2012, 97, 46-55.	3.8	22
87	Simulated watershed scale impacts of corn stover removal for biofuel on hydrology and water quality. Hydrological Processes, 2012, 26, 1629-1641.	1.1	65
88	Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. , 2012, 223, 4253.		1
89	Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed. Water Resources Research, 2011, 47, .	1.7	84
90	Environmental and economic impacts of reducing total phosphorous runoff in an agricultural watershed. Agricultural Systems, 2011, 104, 623-633.	3.2	13

#	Article	IF	CITATIONS
91	Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches. Agricultural Water Management, 2011, 98, 1271-1279.	2.4	34
92	Application of a Multi-Objective Optimization Method to Provide Least Cost Alternatives for NPS Pollution Control. Environmental Management, 2011, 48, 448-461.	1.2	108
93	Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling and Software, 2011, 26, 135-143.	1.9	36
94	Multiple corn stover removal rates for cellulosic biofuels and long-term water quality impacts. Journal of Soils and Water Conservation, 2011, 66, 431-444.	0.8	24
95	Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes, 2010, 24, 1133-1148.	1.1	215
96	Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds. Water (Switzerland), 2010, 2, 849-871.	1.2	79
97	Nutrient Content at the Sediment-Water Interface of Tile-Fed Agricultural Drainage Ditches. Water (Switzerland), 2010, 2, 411-428.	1.2	12
98	Differentiating Impacts of Land Use Changes from Pasture Management in a CEAP Watershed Using the SWAT Model. Transactions of the ASABE, 2010, 53, 1569-1584.	1.1	54
99	Artificial Neural Network Approach for Mapping Contrasting Tillage Practices. Remote Sensing, 2010, 2, 579-590.	1.8	29
100	Impacts of land-use change and best management practice implementation in a Conservation Effects Assessment Project watershed: Northwest Arkansas. Journal of Soils and Water Conservation, 2010, 65, 353-368.	0.8	25
101	Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. Journal of Soils and Water Conservation, 2010, 65, 424-437.	0.8	121
102	Biofuels and water quality: challenges and opportunities for simulation modeling. Biofuels, 2010, 1, 463-477.	1.4	23
103	A computationally efficient inverse modelling approach of inherent optical properties for a remote sensing model. International Journal of Remote Sensing, 2010, 31, 4349-4371.	1.3	3
104	Evaluation of a Hyperspectral Optical - Monte Carlo Remote Sensing Model in a Water Tank Study. Transactions of the ASABE, 2009, 52, 759-769.	1.1	3
105	A Tool for Estimating Best Management Practice Effectiveness in Arkansas. Applied Engineering in Agriculture, 2009, 25, 199-213.	0.3	30
106	Water Quality Impacts of Corn Production to Meet Biofuel Demands. Journal of Environmental Engineering, ASCE, 2009, 135, 1123-1135.	0.7	48
107	GISâ€Based Predictive Models of Hillslope Runoff Generation Processes ¹ . Journal of the American Water Resources Association, 2009, 45, 844-856.	1.0	7
108	Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resources Research, 2009, 45, .	1.7	154

#	Article	IF	CITATIONS
109	Application of Remote Sensing Based Tillage Mapping Technique to Evaluate Water Quality Impacts of Tillage Management Decisions in Upper White River Basin. , 2009, , .		0
110	Delineating runoff processes and critical runoff source areas in a pasture hillslope of the Ozark Highlands. Hydrological Processes, 2008, 22, 4190-4204.	1.1	31
111	Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes, 2008, 22, 5097-5106.	1.1	91
112	Spatial Distributions and Stochastic Parameter Influences on SWAT Flow and Sediment Predictions. Journal of Hydrologic Engineering - ASCE, 2008, 13, 258-269.	0.8	47
113	Removal of Surface Reflection from Above-Water Visible—Near Infrared Spectroscopic Measurements. Applied Spectroscopy, 2008, 62, 1013-1021.	1.2	7
114	Breaking ground: A cooperative approach to collecting information on conservation practices from an initially uncooperative population. Journal of Soils and Water Conservation, 2008, 63, 208A-211A.	0.8	11
115	Targeting vs. Optimization: Critical Evaluation of BMP Implementation Plan for Watershed Management. , 2008, , .		0
116	Tillage Practices Usage in Early Warning Prediction of Atrazine Pollution. Transactions of the ASABE, 2008, 51, 1311-1321.	1.1	11
117	A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resources Research, 2007, 43, .	1.7	87
118	Nutrient Retention, Nutrient Limitation, and Sediment-Nutrient Interactions in a Pasture-Dominated Stream. Transactions of the ASABE, 2007, 50, 35-44.	1.1	17
119	Comment on Cao W, Bowden BW, Davie T, Fenemor A. 2006. â€ [~] Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability'.Hydrological Processes 20(5): 1057-1073. Hydrological Processes, 2007, 21, 3226-3228.	1.1	17
120	Impact of time-scale of the calibration objective function on the performance of watershed models. Hydrological Processes, 2007, 21, 3409-3419.	1.1	28
121	Evaluation of landscape and instream modeling to predict watershed nutrient yields. Environmental Modelling and Software, 2007, 22, 987-999.	1.9	38
122	Sediment Phosphorus Release at Beaver Reservoir, Northwest Arkansas, USA, 2002–2003: A Preliminary Investigation. Water, Air, and Soil Pollution, 2007, 179, 67-77.	1.1	24
123	UNCERTAINTY IN TMDL MODELS. Transactions of the ASABE, 2006, 49, 1033-1049.	1.1	123
124	LAKE WATER QUALITY ASSESSMENT FROM LANDSAT THEMATIC MAPPER DATA USING NEURAL NETWORK: AN APPROACH TO OPTIMAL BAND COMBINATION SELECTION ¹ . Journal of the American Water Resources Association, 2006, 42, 1683-1695.	1.0	58
125	Dissolved phosphorus concentrations and sediment interactions in effluent–dominated Ozark streams. Ecological Engineering, 2006, 26, 375-391.	1.6	73
126	SENSITIVITY ANALYSIS, CALIBRATION, AND VALIDATIONS FOR A MULTISITE AND MULTIVARIABLE SWAT MODEL. Journal of the American Water Resources Association, 2005, 41, 1077-1089.	1.0	351

#	Article	IF	CITATIONS
127	Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. Science of the Total Environment, 2005, 347, 187-207.	3.9	60
128	Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes, 2005, 19, 621-628.	1.1	173
129	Preliminary Estimation of Sediment Phosphorus Flux in Beaver Lake, Northwest Arkansas. , 2004, , .		1
130	Comparison of two methods for modeling monthly TP yield from a watershed. , 2004, , .		1
131	Linking Watershed and Reservoir Models. , 2004, , .		1
132	PHOSPHATE EQUILIBRIUM BETWEEN STREAM SEDIMENTS AND WATER: POTENTIAL EFFECT OF CHEMICAL AMENDMENTS. Transactions of the American Society of Agricultural Engineers, 2004, 47, 1113-1118.	0.9	41
133	Nitrogen and Phosphorus Concentrations and Export from an Ozark Plateau Catchment in the United States. Biosystems Engineering, 2003, 86, 75-85.	1.9	51
134	WATER QUALITY MODEL OUTPUT UNCERTAINTY AS AFFECTED BY SPATIAL RESOLUTION OF INPUT DATA. Journal of the American Water Resources Association, 2003, 39, 977-986.	1.0	112
135	IMPACT OF CALIBRATION WATERSHED ON RUNOFF MODEL ACCURACY. Transactions of the American Society of Agricultural Engineers, 2003, 46, .	0.9	11
136	Quantification of Model Output Uncertainty Due to Watershed Size. , 2002, , .		0
137	FLOOD PULSE DYNAMICS OF AN UNREGULATED RIVER FLOODPLAIN IN THE SOUTHEASTERN U.S. COASTAL PLAIN. Ecology, 2000, 81, 2730-2741.	1.5	120
138	FLOOD PULSE DYNAMICS OF AN UNREGULATED RIVER FLOODPLAIN IN THE SOUTHEASTERN U.S. COASTAL PLAIN. , 2000, 81, 2730.		3
139	QUANTIFYING MODEL OUTPUT UNCERTAINTY DUE TO SPATIAL VARIABILITY OF RAINFALL. Journal of the American Water Resources Association, 1999, 35, 1113-1123.	1.0	53
140	Uncertainty in the model parameters due to spatial variability of rainfall. Journal of Hydrology, 1999, 220, 48-61.	2.3	156
141	Effectiveness of Vegetative Filter Strips in Controlling Losses of Surface-applied Poultry Litter Constituents. Transactions of the American Society of Agricultural Engineers, 1995, 38, 1687-1692.	0.9	66
142	Effectiveness of Vegetative Filter Strips in Retaining Surface-applied Swine Manure Constituents. Transactions of the American Society of Agricultural Engineers, 1994, 37, 845-850.	0.9	89
143	Stochastic Validation of SWAT Model. , 0, , .		1
144	A MULTI-CRITERIA-BASED APPROACH TO QUANTIFY PREDICTIVE UNCERTAINTY OF DISTRIBUTED MODELS WHEN APPLIED TO UNGAUGED BASINS. , 0, , 75-88.		0