
## Babak Alipanahi Ramandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540999/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genetic overlap analysis of endometriosis and asthma identifies shared loci implicating sex hormones and thyroid signalling pathways. Human Reproduction, 2022, 37, 366-383.                                                                                    | 0.4  | 19        |
| 2  | DeepNull models non-linear covariate effects to improve phenotypic prediction and association power. Nature Communications, 2022, 13, 241.                                                                                                                      | 5.8  | 17        |
| 3  | Genetic analysis of endometriosis and depression identifies shared loci and implicates causal links with gastric mucosa abnormality. Human Genetics, 2021, 140, 529-552.                                                                                        | 1.8  | 36        |
| 4  | Disease risk scores for skin cancers. Nature Communications, 2021, 12, 160.                                                                                                                                                                                     | 5.8  | 46        |
| 5  | Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.                                                                                                                               | 2.8  | 30        |
| 6  | Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology. American Journal of Human Genetics, 2021, 108, 1217-1230.                                                                              | 2.6  | 35        |
| 7  | Insights into the genetic basis of retinal detachment. Human Molecular Genetics, 2020, 29, 689-702.                                                                                                                                                             | 1.4  | 26        |
| 8  | Genome-wide association studies of antidepressant class response and treatment-resistant depression. Translational Psychiatry, 2020, 10, 360.                                                                                                                   | 2.4  | 33        |
| 9  | The effect of LRRK2 loss-of-function variants in humans. Nature Medicine, 2020, 26, 869-877.                                                                                                                                                                    | 15.2 | 79        |
| 10 | Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a<br>meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.                                                              | 4.9  | 1,414     |
| 11 | The Parkinson's phenome—traits associated with Parkinson's disease in a broadly phenotyped cohort.<br>Npj Parkinson's Disease, 2019, 5, 4.                                                                                                                      | 2.5  | 34        |
| 12 | Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain. Nature Communications, 2019, 10, 690.                                                                                                               | 5.8  | 62        |
| 13 | Association of Whole-Genome and NETRIN1 Signaling Pathway–Derived Polygenic Risk Scores for<br>Major Depressive Disorder and White Matter Microstructure in the UK Biobank. Biological Psychiatry:<br>Cognitive Neuroscience and Neuroimaging, 2019, 4, 91-100. | 1.1  | 16        |
| 14 | Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families. Neuron, 2018, 98, 743-753.e4.                                                                                                                                      | 3.8  | 63        |
| 15 | Identification of novel risk loci for restless legs syndrome in genome-wide association studies in<br>individuals of European ancestry: a meta-analysis. Lancet Neurology, The, 2017, 16, 898-907.                                                              | 4.9  | 191       |
| 16 | Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon, 2017, 3, e00349.                                                                                                                                                           | 1.4  | 80        |
| 17 | Multiethnic GWAS Reveals Polygenic Architecture of Earlobe Attachment. American Journal of Human<br>Genetics, 2017, 101, 913-924.                                                                                                                               | 2.6  | 29        |
| 18 | Does conservation account for splicing patterns?. BMC Genomics, 2016, 17, 787.                                                                                                                                                                                  | 1.2  | 15        |

Babak Alipanahi Ramandi

| #  | Article                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. Npj Genomic Medicine, 2016, 1, .                   | 1.7  | 295       |
| 20 | Genome-wide characteristics of de novo mutations in autism. Npj Genomic Medicine, 2016, 1,<br>160271-1602710.                                                  | 1.7  | 200       |
| 21 | Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets.<br>Proceedings of the IEEE, 2016, 104, 176-197.                        | 16.4 | 186       |
| 22 | Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome. G3: Genes, Genomes, Genetics, 2015, 5, 2453-2461.     | 0.8  | 43        |
| 23 | Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature<br>Biotechnology, 2015, 33, 831-838.                           | 9.4  | 2,206     |
| 24 | The human splicing code reveals new insights into the genetic determinants of disease. Science, 2015, 347, 1254806.                                            | 6.0  | 1,053     |
| 25 | Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nature Genetics, 2014, 46, 742-747.            | 9.4  | 149       |
| 26 | Widespread intron retention in mammals functionally tunes transcriptomes. Genome Research, 2014, 24, 1774-1786.                                                | 2.4  | 554       |
| 27 | Protein Structure Idealization: How accurately is it possible to model protein structures with dihedral angles?. Algorithms for Molecular Biology, 2013, 8, 5. | 0.3  | 2         |
| 28 | Network cleanup. Nature Biotechnology, 2013, 31, 714-715.                                                                                                      | 9.4  | 26        |
| 29 | Determining Protein Structures from NOESY Distance Constraints by Semidefinite Programming.<br>Journal of Computational Biology, 2013, 20, 296-310.            | 0.8  | 25        |
| 30 | MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 2013, 498, 241-245.                                                     | 13.7 | 326       |
| 31 | Protein Structure by Semidefinite Facial Reduction. Lecture Notes in Computer Science, 2012, , 1-11.                                                           | 1.0  | 2         |
| 32 | How Accurately Can We Model Protein Structures with Dihedral Angles?. Lecture Notes in Computer<br>Science, 2012, , 274-287.                                   | 1.0  | 0         |
| 33 | Guided Locally Linear Embedding. Pattern Recognition Letters, 2011, 32, 1029-1035.                                                                             | 2.6  | 15        |
| 34 | ERROR TOLERANT NMR BACKBONE RESONANCE ASSIGNMENT AND AUTOMATED STRUCTURE GENERATION.<br>Journal of Bioinformatics and Computational Biology, 2011, 09, 15-41.  | 0.3  | 18        |
| 35 | PROTEIN SECONDARY STRUCTURE PREDICTION USING NMR CHEMICAL SHIFT DATA. Journal of Bioinformatics and Computational Biology, 2010, 08, 867-884.                  | 0.3  | 19        |
| 36 | PICKY: a novel SVD-based NMR spectra peak picking method. Bioinformatics, 2009, 25, i268-i275.                                                                 | 1.8  | 61        |