Ren-Jie Chang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1540626/ren-jie-chang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15	321	12	15
papers	citations	h-index	g-index
15	418 ext. citations	9.9	3.47
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
15	GaS:WS Heterojunctions for Ultrathin Two-Dimensional Photodetectors with Large Linear Dynamic Range across Broad Wavelengths. <i>ACS Nano</i> , 2021 ,	16.7	7
14	Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors. <i>Advanced Materials</i> , 2020 , 32, e1906958	24	24
13	High Photoresponsivity in Ultrathin 2D Lateral Graphene:WS:Graphene Photodetectors Using Direct CVD Growth. <i>ACS Applied Materials & Direct CVD Growth.</i> 11, 6421-6430	9.5	52
12	Atomic structural catalogue of defects and vertical stacking in 2H/3R mixed polytype multilayer WS pyramids. <i>Nanoscale</i> , 2019 , 11, 10859-10871	7.7	2
11	High-Performance WS Monolayer Light-Emitting Tunneling Devices Using 2D Materials Grown by Chemical Vapor Deposition. <i>ACS Nano</i> , 2019 , 13, 4530-4537	16.7	34
10	Morphology Control of Two-Dimensional Tin Disulfide on Transition Metal Dichalcogenides Using Chemical Vapor Deposition for Nanoelectronic Applications. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4222-4	4231	12
9	Postgrowth Substitutional Tin Doping of 2D WS Crystals Using Chemical Vapor Deposition. <i>ACS Applied Materials & Applied & Applied Materials & Applied & App</i>	9.5	13
8	Ultrathin All-2D Lateral Graphene/GaS/Graphene UV Photodetectors by Direct CVD Growth. <i>ACS Applied Materials & Applied & Appl</i>	9.5	19
7	Self-Limiting Growth of High-Quality 2D Monolayer MoS2 by Direct Sulfurization Using Precursor-Soluble Substrates for Advanced Field-Effect Transistors and Photodetectors. <i>ACS Applied Nano Materials</i> , 2019 , 2, 369-378	5.6	20
6	High-Performance All 2D-Layered Tin Disulfide: Graphene Photodetecting Transistors with Thickness-Controlled Interface Dynamics. <i>ACS Applied Materials & Dynamics and State S</i>	0 9·5	23
5	Chemical Vapor Deposition Growth of Two-Dimensional Monolayer Gallium Sulfide Crystals Using Hydrogen Reduction of GaS. <i>ACS Omega</i> , 2018 , 3, 7897-7903	3.9	24
4	2D-Layer-Dependent Behavior in Lateral Au/WS2/Graphene Photodiode Devices with Optical Modulation of Schottky Barriers. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6874-6881	5.6	14
3	High-Performance Two-Dimensional Schottky Diodes Utilizing Chemical Vapour Deposition-Grown Graphene-MoS Heterojunctions. <i>ACS Applied Materials & Diversals and State (Section 2018)</i> , 10, 37258-37266	9.5	17
2	Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition. <i>Nanoscale</i> , 2017 , 9, 2324-2329	7.7	14
1	Growth of Large Single-Crystalline Monolayer Hexagonal Boron Nitride by Oxide-Assisted Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2017 , 29, 6252-6260	9.6	46