
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540489/publications.pdf Version: 2024-02-01

PASCAL DÃOMOULIN

#	Article	IF	CITATIONS
1	A solar flare driven by thermal conduction observed in mid-infrared. Astronomy and Astrophysics, 2022, 657, A51.	5.1	9
2	Evolution of Plasma Composition in an Eruptive Flux Rope. Astrophysical Journal, 2022, 924, 17.	4.5	5
3	Eruption of the EUV Hot Channel from the Solar Limb and Associated Moving Type IV Radio Burst. Astrophysical Journal, 2022, 927, 108.	4.5	4
4	Over-expansion of coronal mass ejections modelled using 3D MHD EUHFORIA simulations. Advances in Space Research, 2022, 70, 1663-1683.	2.6	8
5	Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption. Solar Physics, 2022, 297, .	2.5	5
6	The Magnetic Environment of a Stealth Coronal Mass Ejection. Astrophysical Journal, 2021, 908, 89.	4.5	8
7	Over-expansion of a coronal mass ejection generates sub-Alfvénic plasma conditions in the solar wind at Earth. Astronomy and Astrophysics, 2021, 647, A149.	5.1	4
8	Observations of a prominence eruption and loop contraction. Astronomy and Astrophysics, 2021, 647, A85.	5.1	11
9	Plasma Upflows Induced by Magnetic Reconnection Above an Eruptive Flux Rope. Solar Physics, 2021, 296, 1.	2.5	3
10	Alfvénic Perturbations in a Sunspot Chromosphere Linked to Fractionated Plasma in the Corona. Astrophysical Journal, 2021, 907, 16.	4.5	20
11	The Two-step Forbush Decrease: A Tale of Two Substructures Modulating Galactic Cosmic Rays within Coronal Mass Ejections. Astrophysical Journal, 2021, 922, 216.	4.5	10
12	Filament Eruption Driving EUV Loop Contraction and Then Expansion above a Stable Filament. Astrophysical Journal, 2021, 922, 227.	4.5	7
13	20ÂYears of ACE Data: How Superposed Epoch Analyses Reveal Generic Features in Interplanetary CME Profiles. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028150.	2.4	23
14	Contribution of the ageing effect to the observed asymmetry of interplanetary magnetic clouds. Astronomy and Astrophysics, 2020, 639, A6.	5.1	10
15	Can Subphotospheric Magnetic Reconnection Change the Elemental Composition in the Solar Corona?. Astrophysical Journal, 2020, 894, 35.	4.5	9
16	Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis. Astronomy and Astrophysics, 2020, 635, A85.	5.1	11
17	Comparing the Properties of ICMEâ€Induced Forbush Decreases at Earth and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027662.	2.4	14
18	Low Geoâ€Effectiveness of Fast Halo CMEs Related to the 12 Xâ€Class Flares in 2002. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027529.	2.4	11

#	Article	IF	CITATIONS
19	Correcting the effect of magnetic tongues on the tilt angle of bipolar active regions. Astronomy and Astrophysics, 2020, 633, A151.	5.1	3
20	Additivity of relative magnetic helicity in finite volumes. Astronomy and Astrophysics, 2020, 643, A26.	5.1	3
21	Active-region Tilt Angles from White-light Images and Magnetograms: The Role of Magnetic Tongues. Astrophysical Journal, 2020, 894, 131.	4.5	4
22	Definition of the Spatial Propagator and Implications for Magnetic Field Properties. Solar Physics, 2019, 294, 76.	2.5	0
23	Do Current and Magnetic Helicities Have the Same Sign?. Astrophysical Journal, 2019, 884, 55.	4.5	7
24	Transient Inverse-FIP Plasma Composition Evolution within a Solar Flare. Astrophysical Journal, 2019, 875, 35.	4.5	22
25	Modeling the Effect of Mass-draining on Prominence Eruptions. Astrophysical Journal, 2019, 873, 49.	4.5	24
26	Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses. Journal of Geophysical Research: Space Physics, 2019, 124, 812-836.	2.4	62
27	Re-analysis of Lepping's Fitting Method for Magnetic Clouds: Lundquist Fit Reloaded. Solar Physics, 2019, 294, 1.	2.5	5
28	Study of Three-dimensional Magnetic Structure and the Successive Eruptive Nature of Active Region 12371. Astrophysical Journal, 2018, 857, 90.	4.5	13
29	Coronal Elemental Abundances in Solar Emerging Flux Regions. Astrophysical Journal, 2018, 856, 71.	4.5	23
30	Studying the Transfer of Magnetic Helicity in Solar Active Regions with the Connectivity-based Helicity Flux Density Method. Astrophysical Journal, 2018, 852, 141.	4.5	12
31	Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds. Astronomy and Astrophysics, 2018, 619, A139.	5.1	13
32	Physical Processes Involved in the EUV "Surge―Event of 9 May 2012. Solar Physics, 2018, 293, 1.	2.5	7
33	Sequential Eruptions Triggered by Flux Emergence: Observations and Modeling. Astrophysical Journal, 2018, 862, 117.	4.5	21
34	Successive injection of opposite magnetic helicity in solar active region NOAA 11928. Astronomy and Astrophysics, 2017, 597, A104.	5.1	25
35	Vortex and Sink Flows in Eruptive Flares as a Model for Coronal Implosions. Astrophysical Journal, 2017, 837, 115.	4.5	20
36	Apparent and Intrinsic Evolution of Active Region Upflows. Solar Physics, 2017, 292, 46.	2.5	14

#	Article	IF	CITATIONS
37	Field distribution of magnetograms from simulations of active region formation. Astronomy and Astrophysics, 2017, 606, A34.	5.1	1
38	Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions. Astrophysical Journal, 2017, 844, 54.	4.5	14
39	A study of the long term evolution in active region upflows. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	9
40	From Coronal Observations to MHD Simulations, the Building Blocks for 3D Models of Solar Flares (Invited Review). , 2017, , 47-78.		0
41	Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays. Astronomy and Astrophysics, 2016, 592, A118.	5.1	53
42	Quantitative model for the generic 3D shape of ICMEs at 1 AU. Astronomy and Astrophysics, 2016, 595, A19.	5.1	12
43	Evolution of the magnetic field distribution of active regions. Astronomy and Astrophysics, 2016, 596, A69.	5.1	7
44	Properties of Magnetic Tongues over a Solar Cycle. Solar Physics, 2016, 291, 1625-1646.	2.5	15
45	HOMOLOGOUS SOLAR EVENTS ON 2011 JANUARY 27: BUILD-UP AND PROPAGATION IN A COMPLEX CORONAL ENVIRONMENT. Astrophysical Journal, 2016, 823, 5.	4.5	10
46	Typical Profiles and Distributions of Plasma and Magnetic Field Parameters in Magnetic Clouds at 1 AU. Solar Physics, 2016, 291, 2145-2163.	2.5	28
47	Why Are Flare Ribbons Associated with the Spines of Magnetic Null Points Generically Elongated?. Solar Physics, 2016, 291, 1739-1759.	2.5	32
48	Magnetic Flux and Helicity of Magnetic Clouds. Solar Physics, 2016, 291, 531-557.	2.5	26
49	From Coronal Observations to MHD Simulations, the Building Blocks for 3D Models of Solar Flares (Invited Review). Solar Physics, 2015, 290, 3425-3456.	2.5	132
50	THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS. Astrophysical Journal, 2015, 810, 17.	4.5	36
51	Statistical study of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics, 2015, 120, 43-60.	2.4	106
52	Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. Journal of Geophysical Research: Space Physics, 2015, 120, 3328-3349.	2.4	34
53	Testing magnetic helicity conservation in a solar-like active event. Astronomy and Astrophysics, 2015, 580, A128.	5.1	58
54	Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nature Communications, 2015, 6, 7135.	12.8	142

#	Article	IF	CITATIONS
55	Evidence of Twisted Flux-Tube Emergence in Active Regions. Solar Physics, 2015, 290, 727-751.	2.5	22
56	FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION. Astrophysical Journal, 2015, 802, 104.	4.5	36
57	PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS. Astrophysical Journal, 2015, 809, 73.	4.5	27
58	Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations. Solar Physics, 2015, 290, 3279-3294.	2.5	11
59	Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs. Astronomy and Astrophysics, 2014, 565, A99.	5.1	25
60	UNDERSTANDING CORONAL MASS EJECTIONS AND ASSOCIATED SHOCKS IN THE SOLAR CORONA BY MERGING MULTIWAVELENGTH OBSERVATIONS. Astrophysical Journal, 2014, 795, 68.	4.5	37
61	DISTRIBUTION OF ELECTRIC CURRENTS IN SUNSPOTS FROM PHOTOSPHERE TO CORONA. Astrophysical Journal, 2014, 793, 15.	4.5	21
62	The evolution of writhe in kink-unstable flux ropes and erupting filaments. Plasma Physics and Controlled Fusion, 2014, 56, 064012.	2.1	18
63	Photospheric Injection of Magnetic Helicity: Connectivity-Based Flux Density Method. Solar Physics, 2014, 289, 107-136.	2.5	29
64	Topological Analysis of Emerging Bipole Clusters Producing Violent Solar Events. Solar Physics, 2014, 289, 2041-2071.	2.5	51
65	In situ properties of small and large flux ropes in the solar wind. Journal of Geophysical Research: Space Physics, 2014, 119, 7088-7107.	2.4	28
66	ELECTRIC CURRENTS IN FLARE RIBBONS: OBSERVATIONS AND THREE-DIMENSIONAL STANDARD MODEL. Astrophysical Journal, 2014, 788, 60.	4.5	136
67	CORONAL MAGNETIC RECONNECTION DRIVEN BY CME EXPANSION—THE 2011 JUNE 7 EVENT. Astrophysical Journal, 2014, 788, 85.	4.5	53
68	How Can Active Region Plasma Escape into the Solar Wind from Below a Closed Helmet Streamer?. Solar Physics, 2014, 289, 4151-4171.	2.5	23
69	Are There Different Populations of Flux Ropes in the Solar Wind?. Solar Physics, 2014, 289, 2633-2652.	2.5	38
70	Tracking Solar Active Region Outflow Plasma from Its Source to the Near-Earth Environment. Solar Physics, 2014, 289, 3799-3816.	2.5	38
71	The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution. Solar Physics, 2013, 283, 341-367.	2.5	21
72	Study of magnetic flux emergence and related activity in active region NOAA 10314. Advances in Space Research, 2013, 51, 1834-1841.	2.6	7

#	Article	IF	CITATIONS
73	Solar filament eruptions and their physical role in triggering coronal mass ejections. Advances in Space Research, 2013, 51, 1967-1980.	2.6	124
74	Accuracy of magnetic energy computations. Astronomy and Astrophysics, 2013, 553, A38.	5.1	49
75	PLASMA COMPOSITION IN A SIGMOIDAL ANEMONE ACTIVE REGION. Astrophysical Journal, 2013, 778, 69.	4.5	40
76	Evolution of interplanetary coronal mass ejections and magnetic clouds in the heliosphere. Proceedings of the International Astronomical Union, 2013, 8, 245-254.	0.0	0
77	The standard flare model in three dimensions. Astronomy and Astrophysics, 2013, 555, A77.	5.1	163
78	First observational application of a connectivity-based helicity flux density. Astronomy and Astrophysics, 2013, 555, L6.	5.1	28
79	FIP bias in a sigmoidal active region. Proceedings of the International Astronomical Union, 2013, 8, 222-226.	0.0	0
80	Flux rope axis geometry of magnetic clouds deduced from in situ data. Proceedings of the International Astronomical Union, 2013, 8, 265-268.	0.0	0
81	Magnetic reconnection driven by filament eruption in the 7 June 2011 event. Proceedings of the International Astronomical Union, 2013, 8, 502-503.	0.0	0
82	Recurrent filament eruptions and associated CMEs. Proceedings of the International Astronomical Union, 2013, 8, 489-490.	0.0	1
83	Recurrent coronal jets induced by repetitively accumulated electric currents. Astronomy and Astrophysics, 2013, 555, A19.	5.1	65
84	Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astronomy and Astrophysics, 2013, 556, A50.	5.1	42
85	Solar Magnetic Topologies and Reconnection. Geophysical Monograph Series, 2013, , 91-99.	0.1	1
86	The standard flare model in three dimensions. Astronomy and Astrophysics, 2013, 549, A66.	5.1	158
87	Does spacecraft trajectory strongly affect detection of magnetic clouds?. Astronomy and Astrophysics, 2013, 550, A3.	5.1	28
88	Estimation of the squashing degree within a three-dimensional domain. Astronomy and Astrophysics, 2012, 541, A78.	5.1	85
89	INITIATION AND DEVELOPMENT OF THE WHITE-LIGHT AND RADIO CORONAL MASS EJECTION ON 2001 APRIL 15. Astrophysical Journal, 2012, 750, 147.	4.5	35
90	Magnetic Topology of Active Regions and Coronal Holes: Implications for Coronal Outflows and the Solar Wind. Solar Physics, 2012, 281, 237-262.	2.5	58

#	Article	IF	CITATIONS
91	Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. Journal of Geophysical Research, 2012, 117, .	3.3	143
92	EVOLUTION OF HARD X-RAY SOURCES AND ULTRAVIOLET SOLAR FLARE RIBBONS FOR A CONFINED ERUPTION OF A MAGNETIC FLUX ROPE. Astrophysical Journal, 2012, 746, 17.	4.5	34
93	Expansion of magnetic clouds in the outer heliosphere. Astronomy and Astrophysics, 2012, 543, A107.	5.1	41
94	The interplanetary magnetic structure that guides solar relativistic particles. Astronomy and Astrophysics, 2012, 538, A32.	5.1	35
95	Nonlinear Force-Free Extrapolation of Emerging Flux with a Global Twist and Serpentine Fine Structures. Solar Physics, 2012, 278, 73-97.	2.5	61
96	Implications of Non-cylindrical Flux Ropes for Magnetic Cloud Reconstruction Techniques and the Interpretation of Double Flux Rope Events. Solar Physics, 2012, 278, 435-446.	2.5	29
97	Comparing Values of the Relative Magnetic Helicity in Finite Volumes. Solar Physics, 2012, 278, 347-366.	2.5	63
98	Investigating the observational signatures of magnetic cloud substructure. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	20
99	Dynamical evolution of a magnetic cloud from the Sun to 5.4ÂAU. Astronomy and Astrophysics, 2011, 535, A52.	5.1	49
100	Magnetic clouds along the solar cycle: expansion and magnetic helicity. Proceedings of the International Astronomical Union, 2011, 7, 139-148.	0.0	8
101	Evolution of a very complex active region during the decay phase of Cycle 23. Proceedings of the International Astronomical Union, 2011, 7, 246-249.	0.0	2
102	ON ASYMMETRY OF MAGNETIC HELICITY IN EMERGING ACTIVE REGIONS: HIGH-RESOLUTION OBSERVATIONS. Astrophysical Journal, 2011, 727, 28.	4.5	11
103	INITIATION AND EARLY DEVELOPMENT OF THE 2008 APRIL 26 CORONAL MASS EJECTION. Astrophysical Journal, 2011, 729, 107.	4.5	22
104	FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION. Astrophysical Journal, 2011, 728, 65.	4.5	46
105	Homologous Flares and Magnetic Field Topology inÂActive Region NOAA 10501 on 20 November 2003. Solar Physics, 2011, 269, 83-104.	2.5	68
106	Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues. Solar Physics, 2011, 270, 45-74.	2.5	89
107	Actors of the main activity in large complex centres during the 23 solar cycle maximum. Advances in Space Research, 2011, 47, 2081-2091.	2.6	11
108	Twist and writhe of δ-island active regions. Proceedings of the International Astronomical Union, 2010, 6, 153-156.	0.0	0

7

#	Article	IF	CITATIONS
109	A filament supported by different magnetic field configurations. Proceedings of the International Astronomical Union, 2010, 6, 328-332.	0.0	0
110	Solar activity due to magnetic complexity of active regions. Proceedings of the International Astronomical Union, 2010, 6, 164-168.	0.0	0
111	Global and local expansion of magnetic clouds in the inner heliosphere. Astronomy and Astrophysics, 2010, 509, A39.	5.1	99
112	COEXISTING FLUX ROPE AND DIPPED ARCADE SECTIONS ALONG ONE SOLAR FILAMENT. Astrophysical Journal, 2010, 714, 343-354.	4.5	140
113	CRITERIA FOR FLUX ROPE ERUPTION: NON-EQUILIBRIUM VERSUS TORUS INSTABILITY. Astrophysical Journal, 2010, 718, 1388-1399.	4.5	235
114	FORMATION OF TORUS-UNSTABLE FLUX ROPES AND ELECTRIC CURRENTS IN ERUPTING SIGMOIDS. Astrophysical Journal, 2010, 708, 314-333.	4.5	443
115	Evolution of magnetic clouds in the inner heliosphere. , 2010, , .		0
116	Interaction of ICMEs with the Solar Wind. AIP Conference Proceedings, 2010, , .	0.4	12
117	Why proton temperature and velocity are correlated in the SW and not in ICMEs?. , 2010, , .		0
118	MAGNETIC RECONNECTION ALONG QUASI-SEPARATRIX LAYERS AS A DRIVER OF UBIQUITOUS ACTIVE REGION OUTFLOWS. Astrophysical Journal, 2009, 705, 926-935.	4.5	102
119	Magnetic cloud models with bent and oblate cross-section boundaries. Astronomy and Astrophysics, 2009, 507, 969-980.	5.1	41
120	Causes and consequences of magnetic cloud expansion. Astronomy and Astrophysics, 2009, 498, 551-566.	5.1	109
121	Why Do Temperature and Velocity Have Different Relationships in the Solar Wind and in Interplanetary Coronal Mass Ejections?. Solar Physics, 2009, 257, 169-184.	2.5	32
122	Modelling and observations of photospheric magnetic helicity. Advances in Space Research, 2009, 43, 1013-1031.	2.6	87
123	Coronal loops, flare ribbons and aurora during slip-running. Earth, Planets and Space, 2009, 61, 565-568.	2.5	1
124	Linking two consecutive nonmerging magnetic clouds with their solar sources. Journal of Geophysical Research, 2009, 114, .	3.3	68
125	Study of helicity properties of peculiar active regions. Proceedings of the International Astronomical Union, 2009, 5, 102-104.	0.0	1
126	Signatures of interchange reconnection: STEREO, ACE and Hinode observations combined. Annales Geophysicae, 2009, 27, 3883-3897.	1.6	29

#	Article	IF	CITATIONS
127	Expected in Situ Velocities from a Hierarchical Model forÂExpanding Interplanetary Coronal Mass Ejections. Solar Physics, 2008, 250, 347-374.	2.5	79
128	The Recovery of CME-Related Dimmings andÂtheÂICME's Enduring Magnetic Connection toÂtheÂSun. Solar Physics, 2008, 252, 349-372.	2.5	29
129	Analysis of large scale MHD quantities in expanding magnetic clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 1318-1326.	1.6	26
130	Multi-scale reconnections in a complex CME. Advances in Space Research, 2008, 42, 858-865.	2.6	9
131	The link between CME-associated dimmings and interplanetary magnetic clouds. Proceedings of the International Astronomical Union, 2008, 4, 265-270.	0.0	2
132	Are Constant Loop Widths an Artifact of the Background and the Spatial Resolution?. Astrophysical Journal, 2008, 673, 586-597.	4.5	29
133	Nonlinear Forceâ€free Field Modeling of a Solar Active Region around the Time of a Major Flare and Coronal Mass Ejection. Astrophysical Journal, 2008, 675, 1637-1644.	4.5	254
134	A review of the quantitative links between CMEs and magnetic clouds. Annales Geophysicae, 2008, 26, 3113-3125.	1.6	63
135	Why are CMEs large-scale coronal events: nature or nurture?. Annales Geophysicae, 2008, 26, 3077-3088.	1.6	26
136	Locating the solar source of 13 April 2006 magnetic cloud. Annales Geophysicae, 2008, 26, 3159-3168.	1.6	4
137	Identification of a Peculiar Radio Source in the Aftermath of Large Coronal Mass Ejection Events. Astrophysical Journal, 2007, 656, L105-L108.	4.5	5
138	Coronal "Wave": Magnetic Footprint of a Coronal Mass Ejection?. Astrophysical Journal, 2007, 656, L101-L104.	4.5	201
139	Coronal "wave†A signature of the mechanism making CMEs largescale in the low corona?. Astronomische Nachrichten, 2007, 328, 760-763.	1.2	43
140	Estimation of the bias of the Minimum Variance technique in the determination of magnetic clouds global quantities and orientation. Advances in Space Research, 2007, 40, 1881-1890.	2.6	40
141	Recent theoretical and observational developments in magnetic helicity studies. Advances in Space Research, 2007, 39, 1674-1693.	2.6	76
142	Decametric N Burst: A Consequence of the Interaction of Two Coronal Mass Ejections. Solar Physics, 2007, 240, 301-313.	2.5	15
143	A Multiple Flare Scenario where the Classic Long-Duration Flare Was Not the Source of a CME. Solar Physics, 2007, 240, 283-299.	2.5	24
144	Are CME-Related Dimmings Always a Simple Signature of Interplanetary Magnetic Cloud Footpoints?. Solar Physics, 2007, 244, 25-43.	2.5	79

#	Article	IF	CITATIONS
145	Progressive Transformation of a Flux Rope to an ICME. Solar Physics, 2007, 244, 115-137.	2.5	131
146	The magnetic field topology associated with two M flares. Advances in Space Research, 2007, 39, 1382-1388.	2.6	24
147	Where will efficient energy release occur in 3-D magnetic configurations?. Advances in Space Research, 2007, 39, 1367-1377.	2.6	34
148	How to improve the maps of magnetic helicity injection in active regions?. Advances in Space Research, 2007, 39, 1706-1714.	2.6	16
149	What is the role of magnetic null points in large flares?. Advances in Space Research, 2007, 39, 1840-1846.	2.6	12
150	The Magnetic Structure of Coronal Loops Observed byTRACE. Astrophysical Journal, 2006, 639, 459-474.	4.5	74
151	A new model-independent method to compute magnetic helicity in magnetic clouds. Astronomy and Astrophysics, 2006, 455, 349-359.	5.1	173
152	Magnetic reconfiguration before the X 17 Solar flare of October 28 2003. Advances in Space Research, 2006, 37, 1313-1316.	2.6	18
153	Extending the concept of separatrices to QSLs for magnetic reconnection. Advances in Space Research, 2006, 37, 1269-1282.	2.6	110
154	Basic Properties of Mutual Magnetic Helicity. Solar Physics, 2006, 233, 3-27.	2.5	47
155	Companion Event and Precursor of the X17 Flare on 28 October 2003. Solar Physics, 2006, 238, 293-312.	2.5	63
156	Slip-Running Reconnection in Quasi-Separatrix Layers. Solar Physics, 2006, 238, 347-376.	2.5	191
157	What is the spatial distribution of magnetic helicity injected in a solar active region?. Astronomy and Astrophysics, 2006, 452, 623-630.	5.1	43
158	Current sheet formation in quasi-separatrix layers andÂhyperbolicÂfluxÂtubes. Astronomy and Astrophysics, 2005, 444, 961-976.	5.1	190
159	Eruption of a Kink-unstable Filament in NOAA Active Region 10696. Astrophysical Journal, 2005, 628, L163-L166.	4.5	179
160	Radio and Xâ€Ray Signatures of Magnetic Reconnection behind an Ejected Flux Rope. Astrophysical Journal, 2005, 625, 1019-1026.	4.5	46
161	Photospheric flux density of magnetic helicity. Astronomy and Astrophysics, 2005, 439, 1191-1203.	5.1	130
162	Interplanetary flux rope ejected from an X-ray bright point. Astronomy and Astrophysics, 2005, 434, 725-740.	5.1	127

#	Article	IF	CITATIONS
163	Solar and Interplanetary Magnetic Helicity Balance of Active Regions. Highlights of Astronomy, 2005, 13, 122-123.	0.0	0
164	Magnetic clouds: A statistical study of magnetic helicity. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1761-1766.	1.6	34
165	Tracing magnetic helicity from the solar corona to the interplanetary space. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1734-1743.	1.6	35
166	The smallest source region of an interplanetary magnetic cloud: A mini-sigmoid. Advances in Space Research, 2005, 36, 1579-1586.	2.6	9
167	Model-independent large-scale magnetohydrodynamic quantities in magnetic clouds. Advances in Space Research, 2005, 35, 2172-2177.	2.6	18
168	Large scale MHD properties of interplanetary magnetic clouds. Advances in Space Research, 2005, 35, 711-724.	2.6	75
169	Flows in the solar atmosphere due to the eruptions on the 15th July, 2002. Astronomy and Astrophysics, 2005, 438, 1099-1106.	5.1	28
170	Equilibrium and observational properties of line-tied twisted flux tubes. Astronomy and Astrophysics, 2005, 430, 1067-1087.	5.1	96
171	Linking Coronal to Interplanetary Magnetic Helicity. , 2005, , 243-246.		1
172	An Observational Test for Coronal Heating Models. Symposium - International Astronomical Union, 2004, 219, 473-477.	0.1	0
173	Magnetic Helicity Budget of Solar-Active Regions from the Photosphere to Magnetic Clouds. Astrophysics and Space Science, 2004, 290, 319-344.	1.4	30
174	Observational Consequences of a Magnetic Flux Rope Emerging into the Corona. Astrophysical Journal, 2004, 617, 600-613.	4.5	117
175	Multi-wavelength flare study and magnetic configuration. Proceedings of the International Astronomical Union, 2004, 2004, 397-398.	0.0	0
176	A Direct Method to Estimate Magnetic Helicity in Magnetic Clouds. Proceedings of the International Astronomical Union, 2004, 2004, 403-408.	0.0	1
177	The long-term evolution of active regions, multi-wavelength flux and heating studies: observations and theory. Proceedings of the International Astronomical Union, 2004, 2004, 13-22.	0.0	3
178	Emerging Flux and the Heating of Coronal Loops. Astrophysical Journal, 2004, 601, 530-545.	4.5	65
179	How are Emerging Flux, Flares and CMEs Related to Magnetic Polarity Imbalance in Midi Data?. Solar Physics, 2003, 215, 307-325.	2.5	59
180	Magnetic Energy and Helicity Fluxes at the Photospheric Level. Solar Physics, 2003, 215, 203-215.	2.5	174

#	Article	IF	CITATIONS
181	Observations of magnetic helicity. Advances in Space Research, 2003, 32, 1855-1866.	2.6	28
182	Active region helicity evolution and related coronal mass ejection activity. Advances in Space Research, 2003, 32, 1959-1964.	2.6	2
183	Magnetic helicity analysis of an interplanetary twisted flux tube. Journal of Geophysical Research, 2003, 108, .	3.3	59
184	The Longâ€Term Evolution of AR 7978: The Scalings of the Coronal Plasma Parameters with the Mean Photospheric Magnetic Field. Astrophysical Journal, 2003, 586, 579-591.	4.5	44
185	The Magnetic Helicity of an Interplanetary Hot Flux Rope. AIP Conference Proceedings, 2003, , .	0.4	4
186	The Longâ€Term Evolution of AR 7978: Testing Coronal Heating Models. Astrophysical Journal, 2003, 586, 592-605.	4.5	35
187	Amplitude and orientation of prominence magnetic fields from constant-αmagnetohydrostatic models. Astronomy and Astrophysics, 2003, 402, 769-780.	5.1	45
188	Magnetic twist and writhe of active regions. Astronomy and Astrophysics, 2003, 397, 305-318.	5.1	74
189	The Structure and Evolution of a Sigmoidal Active Region. Astrophysical Journal, 2002, 574, 1021-1038.	4.5	122
190	Helicity loading and dissipation: The helicity budget of ar 7978 from the cradle to the grave. COSPAR Colloquia Series, 2002, , 143-146.	0.2	0
191	Theory of magnetic connectivity in the solar corona. Journal of Geophysical Research, 2002, 107, SSH 3-1-SSH 3-13.	3.3	364
192	What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astronomy and Astrophysics, 2002, 382, 650-665.	5.1	169
193	Relationships between CME's and prominences. Advances in Space Research, 2002, 29, 1451-1460.	2.6	19
194	Energetics of the 18 May 1994 brightening event. Advances in Space Research, 2002, 30, 557-560.	2.6	0
195	The Magnetic Helicity Injected by Shearing Motions. Solar Physics, 2002, 207, 87-110.	2.5	82
196	The Magnetic Helicity Budget of a cme-Prolific Active Region. Solar Physics, 2002, 208, 43-68.	2.5	143
197	The role of magnetic bald patches in surges and arch filament systems. Astronomy and Astrophysics, 2002, 391, 317-329.	5.1	42
198	CDS UV Brightenings Explained by Quasi-separatrices and Bald Patches in an S-shape Active Region. Symposium - International Astronomical Union, 2001, 203, 314-317.	0.1	1

#	Article	IF	CITATIONS
199	A Relationship Between Transition Region Brightenings, Abundances, and Magnetic Topology. Solar Physics, 2001, 203, 255-287.	2.5	31
200	Measurement of coronal magnetic twists during loop emergence of NOAA 8069. Solar Physics, 2001, 203, 289-308.	2.5	14
201	Magnetic Activity Associated with Radio Noise Storms. , 2001, , 227-245.		6
202	Hα and Soft Xâ€Ray Brightening Events Caused by Emerging Flux. Astrophysical Journal, 2000, 534, 482-489.	4.5	24
203	Initiation of CMEs: the role of magnetic twist. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1437-1448.	1.6	19
204	Brightening event in Hα and soft X-ray on May 18, 1994. Advances in Space Research, 2000, 25, 1829-1832.	2.6	0
205	3-D magnetic configurations for filaments and flares: The role of "magnetic dips―and "bald patches― Advances in Space Research, 2000, 26, 485-488.	2.6	4
206	Magnetic Activity Associated With Radio Noise Storms. Solar Physics, 2000, 193, 227-245.	2.5	49
207	Magnetic Field and Plasma Scaling Laws: Their Implications for Coronal Heating Models. Astrophysical Journal, 2000, 530, 999-1015.	4.5	187
208	The Counterkink Rotation of a Nonâ€Hale Active Region. Astrophysical Journal, 2000, 544, 540-549.	4.5	94
209	Structuring of the Solar Plasma by the Magnetic Field. Lecture Notes in Physics, 2000, , 99-135.	0.7	11
210	The 3B/X3 solar flare of 27 February 1992. Geofisica International, 2000, 39, 65-71.	0.2	0
211	Results on 3-D solar magnetic field, observations and models. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61, 101-108.	1.6	4
212	Bright Points and Subflares in Ultraviolet Lines and Xâ€Rays. Astrophysical Journal, 1999, 510, 474-484.	4.5	4
213	Quasiâ€6eparatrix Layers in a Reduced Magnetohydrodynamic Model of a Coronal Loop. Astrophysical Journal, 1999, 521, 889-897.	4.5	64
214	Magnetohydrostatic Model of a Bald-Patch Flare. Solar Physics, 1998, 183, 369-388.	2.5	44
215	The Effect of Curvature on Fluxâ€Rope Models of Coronal Mass Ejections. Astrophysical Journal, 1998, 504, 1006-1019.	4.5	168
216	Magnetic Fields in Filaments. International Astronomical Union Colloquium, 1998, 167, 78-85.	0.1	1

#	Article	IF	CITATIONS
217	3-D Twisted Flux-Tube in a Linear Force-Free Equilibrium. International Astronomical Union Colloquium, 1998, 167, 86-89.	0.1	0
218	The Energetics of Flux-Rope Prominence Models in Axially Symmetric Systems. International Astronomical Union Colloquium, 1998, 167, 350-353.	0.1	0
219	Filament Disparition Brusque and CME – September 25–26, 1996 Event. International Astronomical Union Colloquium, 1998, 167, 366-369.	0.1	4
220	CAN WE EXTRAPOLATE A MAGNETIC FIELD WHEN ITS TOPOLOGY IS COMPLEX?. Solar Physics, 1997, 174, 73-89.	2.5	29
221	EVIDENCE OF MAGNETIC RECONNECTION FROM Hα, SOFT X-RAY AND PHOTOSPHERIC MAGNETIC FIELD OBSERVATIONS. Solar Physics, 1997, 174, 229-240.	2.5	52
222	The Importance of Photospheric Intense Flux Tubes for Coronal Heating. Solar Physics, 1997, 175, 123-155.	2.5	32
223	3-D reconnection related to new emerging flux. Advances in Space Research, 1997, 19, 1871-1874.	2.6	0
224	Three-dimensional magnetic reconnection without null points: 2. Application to twisted flux tubes. Journal of Geophysical Research, 1996, 101, 7631-7646.	3.3	184
225	Evidence for Large-Scale Solar Magnetic Reconnection from Radio and X-Ray Measurements. Astrophysical Journal, 1996, 468, L73-L76.	4.5	121
226	3D magnetic reconnection at an X-ray bright point. Solar Physics, 1996, 168, 115-133.	2.5	75
227	Differential Magnetic Field Shear in an Active Region. Astrophysical Journal, 1996, 467, 881.	4.5	81
228	A topological approach to understand a multiple-loop solar flare. Solar Physics, 1995, 161, 103-121.	2.5	46
229	Three-dimensional magnetic reconnection without null points: 1. Basic theory of magnetic flipping. Journal of Geophysical Research, 1995, 100, 23443.	3.3	376
230	Reduction, analysis, and properties of electric current systems in solar active regions. Astrophysical Journal, 1995, 445, 982.	4.5	42
231	Observational support of reconnection in solar flares. Space Science Reviews, 1994, 68, 129-130.	8.1	1
232	Relationship between electric currents, photospheric motions, chromospheric activity, and magnetic field topology. Solar Physics, 1994, 149, 309-330.	2.5	30
233	Relationship between magnetic field evolution and flaring sites in AR 6659 in June 1991. Solar Physics, 1994, 150, 199-219.	2.5	59
234	Interpretation of multiwavelength observations of November 5, 1980 solar flares by the magnetic topology of AR 2766. Solar Physics, 1994, 150, 221-243.	2.5	55

#	Article	IF	CITATIONS
235	Filament formation. Advances in Space Research, 1993, 13, 95-104.	2.6	3
236	Sites of flares and filaments in solar active regions. Advances in Space Research, 1993, 13, 119-122.	2.6	1
237	Relationship between magnetic field evolution and flaring sites in AR 6659 on June 1991. Advances in Space Research, 1993, 13, 123-126.	2.6	1
238	A model for an inverse-polarity prominence supported in a dip of a quadrupolar region. Solar Physics, 1993, 144, 283-305.	2.5	29
239	Common evolution of adjacent sunspot groups. Solar Physics, 1993, 145, 77-94.	2.5	8
240	Observational Evidence for Magnetic Reconnection in Solar Flares. International Astronomical Union Colloquium, 1993, 141, 333-342.	0.1	3
241	Catastrophic Evolution of a Force-free Flux Rope: A Model for Eruptive Flares. Astrophysical Journal, 1993, 417, 368.	4.5	142
242	Development of a topological model for solar flares. Solar Physics, 1992, 139, 105-123.	2.5	51
243	Helical structures around quiescent solar prominences computed from observable magnetic fields. Solar Physics, 1992, 142, 291-311.	2.5	6
244	Structural characteristics of eruptive prominences. Solar Physics, 1992, 141, 289-301.	2.5	15
245	Weighted current sheets supported in normal and inverse configurations - A model for prominence observations. Astrophysical Journal, 1992, 387, 394.	4.5	15
246	Relationship between a spot and a filament observed during spacelab 2 mission. Advances in Space Research, 1990, 10, 195-199.	2.6	2