David Landsman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1539945/publications.pdf

Version: 2024-02-01

76 papers 7,449 citations

30 h-index 79698 73 g-index

81 all docs

81 docs citations

81 times ranked 12001 citing authors

#	Article	IF	CITATIONS
1	Increasing concentration of COVID-19 by socioeconomic determinants and geography in Toronto, Canada: an observational study. Annals of Epidemiology, 2022, 65, 84-92.	1.9	25
2	DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Research, 2022, 50, 1864-1874.	14.5	25
3	Impact of COVID-19 on Tuberculosis Prevention and Treatment in Canada: A Multicenter Analysis of 10Â833 Patients. Journal of Infectious Diseases, 2022, 225, 1317-1320.	4.0	12
4	COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Research, 2021, 49, D274-D281.	14.5	441
5	Histone tails as signaling antennas of chromatin. Current Opinion in Structural Biology, 2021, 67, 153-160.	5.7	32
6	Human Histone Interaction Networks: An Old Concept, New Trends. Journal of Molecular Biology, 2021, 433, 166684.	4.2	4
7	PM4NGS, a project management framework for next-generation sequencing data analysis. GigaScience, 2021, 10, .	6.4	0
8	Transcriptome annotation in the cloud: complexity, best practices, and cost. GigaScience, 2021, 10, .	6.4	9
9	Cohort profile: St. Michael's Hospital Tuberculosis Database (SMH-TB), a retrospective cohort of electronic health record data and variables extracted using natural language processing. PLoS ONE, 2021, 16, e0247872.	2.5	0
10	A model of active transcription hubs that unifies the roles of active promoters and enhancers. Nucleic Acids Research, 2021, 49, 4493-4505.	14.5	27
11	Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. Nature Communications, 2021, 12, 5280.	12.8	43
12	Heterogeneity in testing, diagnosis and outcome in SARS-CoV-2 infection across outbreak settings in the Greater Toronto Area, Canada: an observational study. CMAJ Open, 2020, 8, E627-E636.	2.4	27
13	Estimated surge in hospital and intensive care admission because of the coronavirus disease 2019 pandemic in the Greater Toronto Area, Canada: a mathematical modelling study. CMAJ Open, 2020, 8, E593-E604.	2.4	7
14	Molecular recognition of nucleosomes by binding partners. Current Opinion in Structural Biology, 2019, 56, 164-170.	5.7	21
15	Structural interpretation of DNA–protein hydroxyl-radical footprinting experiments with high resolution using HYDROID. Nature Protocols, 2018, 13, 2535-2556.	12.0	6
16	The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genetics, 2018, 14, e1007232.	3.5	13
17	Role of the pre-initiation complex in Mediator recruitment and dynamics. ELife, 2018, 7, .	6.0	30
18	HMGN1 Modulates Nucleosome Occupancy and DNase I Hypersensitivity at the CpG Island Promoters of Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 3377-3389.	2.3	68

#	Article	IF	CITATIONS
19	Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem. PLoS ONE, 2013, 8, e68500.	2.5	30
20	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2012, 40, D13-D25.	14.5	510
21	Differences in local genomic context of bound and unbound motifs. Gene, 2012, 506, 125-134.	2.2	3
22	The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genomics, 2012, 13, 151.	2.8	52
23	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	3.9	265
24	In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Structural Biology, 2012, 12, 25.	2.3	26
25	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2011, 39, D38-D51.	14.5	582
26	Analysis of Biological Features Associated with Meiotic Recombination Hot and Cold Spots in Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e29711.	2.5	20
27	Towards BioDBcore: a community-defined information specification for biological databases. Nucleic Acids Research, 2011, 39, D7-D10.	14.5	32
28	Genome Sequence of the Mycobacterium colombiense Type Strain, CECT 3035. Journal of Bacteriology, 2011, 193, 5866-5867.	2.2	7
29	Effects of HMGN variants on the cellular transcription profile. Nucleic Acids Research, 2011, 39, 4076-4087.	14.5	38
30	Ten Simple Rules for Developing a Short Bioinformatics Training Course. PLoS Computational Biology, 2011, 7, e1002245.	3.2	29
31	The Histone Database: an integrated resource for histones and histone fold-containing proteins. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar048-bar048.	3.0	40
32	DATABASE: A new forum for biological databases and curation. Database: the Journal of Biological Databases and Curation, 2010, 2009, bap002-bap002.	3.0	10
33	Many sequence-specific chromatin modifying protein-binding motifs show strong positional preferences for potential regulatory regions in the Saccharomyces cerevisiae genome. Nucleic Acids Research, 2010, 38, 1772-1779.	14.5	21
34	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2010, 38, D5-D16.	14.5	417
35	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2009, 37, D5-D15.	14.5	797
36	Repetitive DNA elements, nucleosome binding and human gene expression. Gene, 2009, 436, 12-22.	2.2	32

#	Article	IF	CITATIONS
37	Identification of cis-Regulatory Elements in Gene Co-expression Networks Using A-GLAM. Methods in Molecular Biology, 2009, 541, 3-22.	0.9	14
38	Promoter Analysis: Gene Regulatory Motif Identification with A-GLAM. Methods in Molecular Biology, 2009, 537, 263-276.	0.9	7
39	Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics, 2008, 9, 226.	2.8	62
40	The biological function of some human transcription factor binding motifs varies with position relative to the transcription start site. Nucleic Acids Research, 2008, 36, 2777-2786.	14.5	19
41	Expression Patterns of Protein Kinases Correlate with Gene Architecture and Evolutionary Rates. PLoS ONE, 2008, 3, e3599.	2.5	20
42	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2007, 36, D13-D21.	14.5	757
43	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2007, 35, D5-D12.	14.5	757
44	Multiple independent evolutionary solutions to core histone gene regulation. Genome Biology, 2006, 7, R122.	9.6	47
45	Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements. BMC Bioinformatics, 2006, 7, 408.	2.6	2
46	The histone database: A comprehensive resource for histones and histone fold-containing proteins. Proteins: Structure, Function and Bioinformatics, 2005, 62, 838-842.	2.6	51
47	Alignments anchored on genomic landmarks can aid in the identification of regulatory elements. Bioinformatics, 2005, 21, i440-i448.	4.1	30
48	Global Regulation by the Yeast Spt10 Protein Is Mediated through Chromatin Structure and the Histone Upstream Activating Sequence Elements. Molecular and Cellular Biology, 2005, 25, 9127-9137.	2.3	58
49	Histone structure and nucleosome stability. Expert Review of Proteomics, 2005, 2, 719-729.	3.0	237
50	Statistical analysis of over-represented words in human promoter sequences. Nucleic Acids Research, 2004, 32, 949-958.	14.5	108
51	High-resolution genome-wide mapping of histone modifications. Nature Biotechnology, 2004, 22, 1013-1016.	17.5	199
52	Characterization of sequence variability in nucleosome core histone folds. Proteins: Structure, Function and Bioinformatics, 2003, 52, 454-465.	2.6	18
53	Mining Core Histone Sequences from Public Protein Databases. Methods in Enzymology, 2003, 375, 3-20.	1.0	3
54	Identifying related L1 retrotransposons by analyzing 3' transduced sequences. Genome Biology, 2003, 4, R30.	9.6	34

#	Article	IF	CITATIONS
55	Retroposed Copies of the HMG Genes: A Window to Genome Dynamics. Genome Research, 2003, 13, 800-812.	5.5	35
56	B-ZIP Proteins Encoded by the Drosophila Genome: Evaluation of Potential Dimerization Partners. Genome Research, 2002, 12, 1190-1200.	5.5	68
57	Expressed Sequence Tags (ESTs). Methods of Biochemical Analysis, 2002, 43, 283-301.	0.2	8
58	Learning about addiction from the genome. Nature, 2001, 409, 834-835.	27.8	137
59	NBP-45, a Novel Nucleosomal Binding Protein with a Tissue-specific and Developmentally Regulated Expression. Journal of Biological Chemistry, 2000, 275, 6368-6374.	3.4	51
60	Histone Sequence Database: sequences, structures, post-translational modifications and genetic loci. Nucleic Acids Research, 1999, 27, 323-324.	14.5	10
61	The Biochemical and Phenotypic Characterization of Hho1p, the Putative Linker Histone H1 of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 7268-7276.	3.4	132
62	Predictive Methods Using Protein Sequences. Methods of Biochemical Analysis, 1998, 39, 246-267.	0.2	0
63	Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. Journal of Molecular Biology, 1997, 267, 818-829.	4.2	74
64	Histone H1 inSaccharomyces cerevisiae: a double mystery solved?. Trends in Biochemical Sciences, 1996, 21, 287-288.	7.5	22
65	Common sequence and structural features in the heat-shock factor and Ets families of DNA-binding domains. Trends in Biochemical Sciences, 1995, 20, 225-226.	7. 5	18
66	The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Research, 1995, 23, 1604-1613.	14.5	209
67	A signature for the HMGâ€1 box DNAâ€binding proteins. BioEssays, 1993, 15, 539-546.	2.5	265
68	RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Research, 1992, 20, 2861-2864.	14.5	128
69	Mapping the human gene coding for chromosomal protein HMG-17. Human Genetics, 1990, 85, 376-8.	3.8	13
70	Mouse non-histone chromosomal protein HMG-14 cDNA sequence. Nucleic Acids Research, 1990, 18, 5311-5311.	14.5	8
71	A single copy gene for chicken chromosomal protein HMG-14b has evolutionarily conserved features, has lost one of its introns and codes for a rapidly evolving protein. Journal of Molecular Biology, 1990, 211, 49-61.	4.2	24
72	Cell cycle regulated synthesis of an abundant transcript for human chromosomal protein HMG-17. Nucleic Acids Research, 1987, 15, 3549-3561.	14.5	23

#	Article	IF	CITATION
73	Chicken non-histone chromosomal protein HMG-17 cDNA sequence. Nucleic Acids Research, 1987, 15, 6750-6750.	14.5	12
74	Retropseudogenes for human chromosomal protein HMG-17. Journal of Molecular Biology, 1987, 197, 405-413.	4.2	38
75	Exchange of proteins during immunofractionation of chromatin. Experimental Cell Research, 1986, 163, 95-102.	2.6	21
76	Immunofractionation of chromatin regions associated with histone H1o. FEBS Journal, 1986, 160, 253-260.	0.2	26