Atsushi Izumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1539535/publications.pdf

Version: 2024-02-01

567144 580701 25 29 618 15 citations h-index g-index papers 29 29 29 499 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	XAFS and HAXPES analyses of the oxidation state of a copper surface buried under a phenolic resin nanofilm. Applied Surface Science, 2022, 589, 152967.	3.1	1
2	In Situ Neutron Reflectometry Analysis of Interfacial Structure Formation between Phenolic Resin and Silica during Curing. Langmuir, 2021, 37, 13867-13872.	1.6	2
3	Interfacial Cross-Link Inhomogeneity of a Phenolic Resin on a Silica Surface As Revealed by X-ray and Neutron Reflection Measurements. Macromolecules, 2020, 53, 4082-4089.	2.2	7
4	In situ residual stress analysis in a phenolic resin and copper composite material during curing. Polymer, 2019, 182, 121857.	1.8	14
5	Phenolic Resins – Recent Progress of Structure and Properties Investigations. Macromolecular Symposia, 2019, 385, 1800156.	0.4	7
6	Network structure evolution of a hexamethylenetetramine-cured phenolic resin. Polymer Journal, 2019, 51, 155-160.	1.3	13
7	In Situ Residual Stress Analysis in a Glass-Fiber-Reinforced PhenolicResin and Copper Composite Material During Curing. Journal of the Adhesion Society of Japan, 2019, 55, 421-426.	0.0	1
8	Molecular Dynamics Simulations of Crossâ€Linked Phenolic Resins Using a Unitedâ€Atom Model. Macromolecular Theory and Simulations, 2018, 27, 1700103.	0.6	18
9	Diffusion Behavior of Methanol Molecules Confined in Cross-Linked Phenolic Resins Studied Using Neutron Scattering and Molecular Dynamics Simulations. Macromolecules, 2018, 51, 6334-6343.	2.2	12
10	Structure and Functions of Phenolic Resin. Journal of the Adhesion Society of Japan, 2018, 54, 451-458.	0.0	2
11	Structure-mechanical property relationships in crosslinked phenolic resin investigated by molecular dynamics simulation. Polymer, 2017, 116, 506-514.	1.8	38
12	X 線回æŠ~法ã«ã,^ã,‹åŠå°Žä½"パッã,±ãƒ¼ã,ç"¨å°æ¢æ¨¹è,,,ï¼éŠ…ç•Œé¢ã®æ®‹ç•™å¿œåŠ›è©•ä¾¡. Seikei-ŀ	Kak o uo, 202	17, 0 29, 159-16
13	Cross-link inhomogeneity in phenolic resins at the initial stage of curing studied by 1H-pulse NMR spectroscopy and complementary SAXS/WAXS and SANS/WANS with a solvent-swelling technique. Polymer, 2016, 103, 152-162.	1.8	32
14	Large-scale molecular dynamics simulation of crosslinked phenolic resins using pseudo-reaction model. Polymer, 2016, 103, 261-276.	1.8	34
15	Dynamic light scattering study of the curing mechanisms of novolac-type phenolic resins. Polymer Journal, 2015, 47, 428-433.	1.3	16
16	Gelation and cross-link inhomogeneity of phenolic resins studied by small- and wide-angle X-ray scattering and 1H-pulse NMR spectroscopy. Polymer, 2015, 59, 226-233.	1.8	28
17	Structural Analysis of Cured Phenolic Resins using Complementary SANS and SAXS. Hamon, 2014, 24, 11-14.	0.0	0
18	Structural Analysis of Phenolic Resin Moldings Using SAXS and SANS. Seikei-Kakou, 2014, 26, 464-467.	0.0	0

#	Article	IF	CITATIONS
19	Gelation and cross-link inhomogeneity of phenolic resins studied by 13C-NMR spectroscopy and small-angle X-ray scattering. Soft Matter, 2013, 9, 4188.	1.2	35
20	Structural analysis of cured phenolic resins using complementary small-angle neutron and X-ray scattering and scanning electron microscopy. Soft Matter, 2012, 8, 8438.	1.2	29
21	Atomistic molecular dynamics study of cross-linked phenolic resins. Soft Matter, 2012, 8, 5283.	1.2	59
22	Dynamic light scattering and small-angle neutron scattering studies on phenolic resin solutions. Polymer, 2011, 52, 4355-4361.	1.8	17
23	Synthesis and properties of a deuterated phenolic resin. Journal of Polymer Science Part A, 2011, 49, 4941-4947.	2.5	19
24	Design and Synthesis of Stimuli-Responsive Conjugated Polymers Having Azobenzene Units in the Main Chain. Macromolecules, 2001, 34, 4342-4347.	2.2	77
25	Multicolor Fluorescentπ-Conjugated Oligomer Having Salicylideneaniline Moieties. Chemistry Letters, 2001, 30, 916-917.	0.7	10
26	A New Synthetic Method for Poly(arylene)s Using Bis(pinacolato)diboron as a Condensation Reagent. Chemistry Letters, 2000, 29, 728-729.	0.7	16
27	Synthesis of conjugated polymers with azobenzene moieties in the main chain. Journal of Polymer Science Part A, 2000, 38, 1057-1063.	2.5	44
28	Synthesis of A New Class of n-Dopable and Photoluminescent Conjugated Polymers Having Phenazine Units in the Main Chain. Macromolecules, 2000, 33, 8918-8920.	2.2	15
29	Synthesis of Poly(p-phenylene)-Based Photoresponsive Conjugated Polymers Having Azobenzene Units in the Main Chain. Macromolecules, 2000, 33, 5347-5352.	2.2	72