Nobuko Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1539340/publications.pdf

Version: 2024-02-01

250 papers 8,017 citations

57758 44 h-index 70 g-index

262 all docs 262 docs citations

times ranked

262

2578 citing authors

#	Article	IF	CITATIONS
1	Multiparty asynchronous session types. , 2008, , .		287
2	Proteomic Analysis of <i>Trypanosoma cruzi</i> Secretome: Characterization of Two Populations of Extracellular Vesicles and Soluble Proteins. Journal of Proteome Research, 2013, 12, 883-897.	3.7	235
3	On reduction-based process semantics. Theoretical Computer Science, 1995, 151, 437-486.	0.9	230
4	Multiparty Asynchronous Session Types. Journal of the ACM, 2016, 63, 1-67.	2.2	215
5	Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1993, 59, 293-303.	1.1	210
6	Molecular basis of mammalian cell invasion by Trypanosoma cruzi. Anais Da Academia Brasileira De Ciencias, 2006, 78, 87-111.	0.8	203
7	The Lipid Structure of the Glycosylphosphatidylinositol-anchored Mucin-like Sialic Acid Acceptors of Trypanosoma cruzi Changes during Parasite Differentiation from Epimastigotes to Infective Metacyclic Trypomastigote Forms. Journal of Biological Chemistry, 1995, 270, 27244-27253.	3.4	187
8	Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Molecular and Biochemical Parasitology, 1986, 18, 271-282.	1.1	170
9	Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity. Biochemical Journal, 1998, 330, 505-511.	3.7	161
10	Multiparty asynchronous session types. ACM SIGPLAN Notices, 2008, 43, 273-284.	0.2	153
11	Global Progress in Dynamically Interleaved Multiparty Sessions. Lecture Notes in Computer Science, 2008, , 418-433.	1.3	116
12	Multiparty Session Types Meet Communicating Automata. Lecture Notes in Computer Science, 2012, , 194-213.	1.3	96
13	Trypanosoma cruzi infection by oral route. Parasitology International, 2008, 57, 105-109.	1.3	87
14	The 35/50 kDa surface antigen of Trypanosoma cruzi metacyclic trypomastigotes, an adhesion molecule involved in host cell invasion. Parasite Immunology, 1993, 15, 121-125.	1.5	86
15	Ca2+ signal induced by Trypanosoma cruzi metacyclic trypomastigote surface molecules implicated in mammalian cell invasion. Molecular and Biochemical Parasitology, 1995, 73, 285-289.	1.1	81
16	Session-Based Distributed Programming in Java. Lecture Notes in Computer Science, 2008, , 516-541.	1.3	81
17	A Theory of Design-by-Contract for Distributed Multiparty Interactions. Lecture Notes in Computer Science, 2010, , 162-176.	1.3	81
18	Language Primitives and Type Discipline for Structured Communication-Based Programming Revisited: Two Systems for Higher-Order Session Communication. Electronic Notes in Theoretical Computer Science, 2007, 171, 73-93.	0.9	80

#	Article	IF	Citations
19	Strong normalisation in the π-calculus. Information and Computation, 2004, 191, 145-202.	0.7	73
20	Structured Communication-Centered Programming for Web Services. ACM Transactions on Programming Languages and Systems, 2012, 34, 1-78.	2.1	73
21	Behavioral Types in Programming Languages. Foundations and Trends in Programming Languages, 2016, 3, 95-230.	1.8	73
22	Graph types for monadic mobile processes. Lecture Notes in Computer Science, 1996, , 371-386.	1.3	73
23	Starvation and rapamycin differentially regulate host cell lysosome exocytosis and invasion by Trypanosoma cruzi metacyclic forms. Cellular Microbiology, 2011, 13, 943-954.	2.1	71
24	Cloning and characterization of a gene for the stage-specific 82-kDa surface antigen of metacyclic trypomastogotes of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1994, 65, 161-169.	1.1	70
25	Global Principal Typing in Partially Commutative Asynchronous Sessions. Lecture Notes in Computer Science, 2009, , 316-332.	1.3	70
26	Cell signaling during Trypanosoma cruzi invasion. Frontiers in Immunology, 2012, 3, 361.	4.8	69
27	Use of <scp>l</scp> -Proline and ATP Production by <i>Trypanosoma cruzi</i> Metacyclic Forms as Requirements for Host Cell Invasion. Infection and Immunity, 2009, 77, 3023-3032.	2.2	68
28	Involvement of Trypanosoma cruzi Metacyclic Trypomastigote Surface Molecule gp82 in Adhesion to Gastric Mucin and Invasion of Epithelial Cells. Infection and Immunity, 2003, 71, 557-561.	2.2	67
29	Global progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer Science, 2016, 26, 238-302.	0.6	67
30	Activation of distinct signal transduction pathways in Trypanosoma cruzi isolates with differential capacity to invade host cells. International Journal for Parasitology, 2002, 32, 405-414.	3.1	66
31	Molecular mechanisms of Trypanosoma cruzi infection by oral route. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 101-107.	1.6	66
32	Novel strategy in Trypanosoma cruzi cell invasion: Implication of cholesterol and host cell microdomains. International Journal for Parasitology, 2007, 37, 1431-1441.	3.1	65
33	Game-theoretic analysis of call-by-value computation. Theoretical Computer Science, 1999, 221, 393-456.	0.9	62
34	Multiparty Compatibility in Communicating Automata: Characterisation and Synthesis of Global Session Types. Lecture Notes in Computer Science, 2013, , 174-186.	1.3	60
35	Targeted Reduction in Expression of Trypanosoma cruzi Surface Glycoprotein gp90 Increases Parasite Infectivity. Infection and Immunity, 2001, 69, 353-359.	2.2	59
36	Invasion mechanisms among emerging food-borne protozoan parasites. Trends in Parasitology, 2011, 27, 459-466.	3.3	58

#	Article	IF	Citations
37	Secure Information Flow as Typed Process Behaviour. Lecture Notes in Computer Science, 2000, , 180-199.	1.3	57
38	Scribbling Interactions with a Formal Foundation. Lecture Notes in Computer Science, 2011, , 55-75.	1.3	56
39	From Communicating Machines to Graphical Choreographies. , 2015, , .		54
40	On Progress for Structured Communications. , 2007, , 257-275.		54
41	Actin Cytoskeleton-Dependent and -Independent Host Cell Invasion by Trypanosoma cruzi Is Mediated by Distinct Parasite Surface Molecules. Infection and Immunity, 2006, 74, 5522-5528.	2.2	53
42	Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Molecular and Biochemical Parasitology, 1997, 84, 57-67.	1.1	51
43	Hybrid Session Verification Through Endpoint API Generation. Lecture Notes in Computer Science, 2016, , 401-418.	1.3	51
44	Trypanosoma cruzi surface molecule gp90 downregulates invasion of gastric mucosal epithelium in orally infected mice. Microbes and Infection, 2006, 8, 36-44.	1.9	50
45	Less is more: multiparty session types revisited. , 2019, 3, 1-29.		49
46	Lysosome biogenesis/scattering increases host cell susceptibility to invasion by <i>Trypanosoma cruzi</i> metacyclic forms and resistance to tissue culture trypomastigotes. Cellular Microbiology, 2016, 18, 748-760.	2.1	48
47	Trypanosoma cruzi175-kDa Protein Tyrosine Phosphorylation Is Associated with Host Cell Invasion. Experimental Parasitology, 1998, 89, 188-194.	1.2	47
48	Interaction with host factors exacerbates Trypanosoma cruzi cell invasion capacity upon oral infection. International Journal for Parasitology, 2007, 37, 1609-1616.	3.1	47
49	Structured Interactional Exceptions in Session Types. Lecture Notes in Computer Science, 2008, , 402-417.	1.3	46
50	Role of GP82 in the Selective Binding to Gastric Mucin during Oral Infection with Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2010, 4, e613.	3.0	45
51	Unique behavior of Trypanosoma cruzi mevalonate kinase: A conserved glycosomal enzyme involved in host cell invasion and signaling. Scientific Reports, 2016, 6, 24610.	3.3	45
52	Monitoring Networks through Multiparty Session Types. Lecture Notes in Computer Science, 2013, , 50-65.	1.3	45
53	Host cell invasion mediated by Trypanosoma cruzi surface molecule gp82 is associated with F-actin disassembly and is inhibited by enteroinvasive Escherichia coli. Microbes and Infection, 2006, 8, 1502-1512.	1.9	44
54	The Scribble Protocol Language. Lecture Notes in Computer Science, 2014, , 22-41.	1.3	44

#	Article	IF	Citations
55	Infection by Trypanosoma cruzi Metacyclic Forms Deficient in gp82 but Expressing a Related Surface Molecule, gp30. Infection and Immunity, 2003, 71, 6184-6191.	2.2	43
56	Static deadlock detection for concurrent go by global session graph synthesis., 2016,,.		43
57	A static verification framework for message passing in Go using behavioural types. , 2018, , .		43
58	Molecular Characterization of Serine-, Alanine-, and Proline-Rich Proteins of Trypanosoma cruzi and Their Possible Role in Host Cell Infection. Infection and Immunity, 2006, 74, 1537-1546.	2.2	41
59	Practical interruptible conversations: distributed dynamic verification with multiparty session types and Python. Formal Methods in System Design, 2015, 46, 197-225.	0.8	41
60	Multiparty Session C: Safe Parallel Programming with Message Optimisation. Lecture Notes in Computer Science, 2012, , 202-218.	1.3	41
61	Parameterised Multiparty Session Types. Lecture Notes in Computer Science, 2010, , 128-145.	1.3	40
62	Characterization of the Cell Adhesion Site of Trypanosoma cruzi Metacyclic Stage Surface Glycoprotein gp82. Infection and Immunity, 2000, 68, 478-484.	2.2	39
63	Dynamic multirole session types. ACM SIGPLAN Notices, 2011, 46, 435-446.	0.2	39
64	Compositional Choreographies. Lecture Notes in Computer Science, 2013, , 425-439.	1.3	39
65	Let it recover: multiparty protocol-induced recovery. , 2017, , .		38
66	A session type provider: compile-time API generation of distributed protocols with refinements in F#. , 2018, , .		38
67	Sequentiality and the π-Calculus. Lecture Notes in Computer Science, 2001, , 29-45.	1.3	38
68	Parameterised Multiparty Session Types. Logical Methods in Computer Science, 0, Volume 8, Issue 4, .	0.4	37
69	Identification of a domain of Trypanosoma cruzi metacyclic trypomastigote surface molecule gp82 required for attachment and invasion of mammalian cells. Molecular and Biochemical Parasitology, 1996, 78, 209-216.	1.1	36
70	Dynamic multirole session types., 2011,,.		36
71	Characterization of Trypanosoma cruzi Sirtuins as Possible Drug Targets for Chagas Disease. Antimicrobial Agents and Chemotherapy, 2015, 59, 4669-4679.	3.2	36
72	Session typing and asynchronous subtyping for the higher-order π-calculus. Information and Computation, 2015, 241, 227-263.	0.7	36

#	Article	IF	CITATIONS
73	Distributed programming using role-parametric session types in go: statically-typed endpoint APIs for dynamically-instantiated communication structures., 2019, 3, 1-30.		35
74	Molecular Characterization of a Novel Family of Trypanosoma cruzi Surface Membrane Proteins (TcSMP) Involved in Mammalian Host Cell Invasion. PLoS Neglected Tropical Diseases, 2015, 9, e0004216.	3.0	34
75	Explicit Connection Actions in Multiparty Session Types. Lecture Notes in Computer Science, 2017, , 116-133.	1.3	33
76	Mammalian cell invasion by closely related Trypanosoma species T. dionisii and T. cruzi. Acta Tropica, 2012, 121, 141-147.	2.0	32
77	A Gentle Introduction to Multiparty Asynchronous Session Types. Lecture Notes in Computer Science, 2015, , 146-178.	1.3	30
78	Structural Basis of the Interaction of a Trypanosoma cruzi Surface Molecule Implicated in Oral Infection with Host Cells and Gastric Mucin. PLoS ONE, 2012, 7, e42153.	2.5	29
79	Timed runtime monitoring for multiparty conversations. Formal Aspects of Computing, 2017, 29, 877-910.	1.8	29
80	Reactivity of stage-specific monoclonal antibody 1G7 with metacyclic trypomastigotes of Trypanosoma cruzi strains: lytic property and 90 000 mol. wt surface antigen polymorphism. Parasite Immunology, 1988, 10, 369-378.	1.5	28
81	A compositional logic for polymorphic higher-order functions. , 2004, , .		27
82	Genericity and the π-calculus. Acta Informatica, 2005, 42, 83-141.	0.5	27
83	Objects and session types. Information and Computation, 2009, 207, 595-641.	0.7	27
84	Monitoring networks through multiparty session types. Theoretical Computer Science, 2017, 669, 33-58.	0.9	27
85	Type-Safe Eventful Sessions in Java. Lecture Notes in Computer Science, 2010, , 329-353.	1.3	27
86	Timed Multiparty Session Types. Lecture Notes in Computer Science, 2014, , 419-434.	1.3	27
87	Protocol-based verification of message-passing parallel programs. , 2015, , .		27
88	Fencing off go: liveness and safety for channel-based programming. , 2017, , .		27
89	A Calculus of Global Interaction based on Session Types. Electronic Notes in Theoretical Computer Science, 2007, 171, 127-151.	0.9	26
90	A Distributed Object-Oriented Language with Session Types. Lecture Notes in Computer Science, 2005, , 299-318.	1.3	26

#	Article	IF	Citations
91	safeDpi: a language for controlling mobile code. Acta Informatica, 2005, 42, 227-290.	0.5	25
92	Differential Infectivity by the Oral Route of Trypanosoma cruzi Lineages Derived from Y Strain. PLoS Neglected Tropical Diseases, 2012, 6, e1804.	3.0	25
93	Expression and cellular trafficking of GP82 and GP90 glycoproteins during Trypanosoma cruzi metacyclogenesis. Parasites and Vectors, 2013, 6, 127.	2.5	25
94	Practical Interruptible Conversations. Lecture Notes in Computer Science, 2013, , 130-148.	1.3	25
95	On the Undecidability of Asynchronous Session Subtyping. Lecture Notes in Computer Science, 2017, , 441-457.	1.3	25
96	Combinatory representation of mobile processes. , 1994, , .		24
97	Molecular basis of non-virulence of Trypanosoma cruzi clone CL-14. International Journal for Parasitology, 2004, 34, 851-860.	3.1	24
98	Cell Adhesion and Ca 2+ Signaling Activity in Stably Transfected Trypanosoma cruzi Epimastigotes Expressing the Metacyclic Stage-Specific Surface Molecule gp82. Infection and Immunity, 2003, 71, 1561-1565.	2.2	23
99	Molecular Characterization of Trypanosoma cruzi SAP Proteins with Host-Cell Lysosome Exocytosis-Inducing Activity Required for Parasite Invasion. PLoS ONE, 2013, 8, e83864.	2.5	23
100	On the Preciseness of Subtyping in Session Types. , 2014, , .		23
101	Subtyping and Locality in Distributed Higher Order Processes. Lecture Notes in Computer Science, 1999, , 557-572.	1.3	23
102	Game theoretic analysis of call-by-value computation. Lecture Notes in Computer Science, 1997, , 225-236.	1.3	23
103	Protocols by Default. Lecture Notes in Computer Science, 2015, , 212-232.	1.3	23
104	Multiparty session types as coherence proofs. Acta Informatica, 2017, 54, 243-269.	0.5	22
105	Effects as sessions, sessions as effects., 2016,,.		22
106	Characterization of the infective properties of a new genetic group of Trypanosoma cruzi associated with bats. Acta Tropica, 2011, 120, 231-237.	2.0	21
107	Host cell protein LAMPâ€⊋ is the receptor for <i>Trypanosoma cruzi</i> surface molecule gp82 that mediates invasion. Cellular Microbiology, 2019, 21, e13003.	2.1	21
108	A uniform type structure for secure information flow. ACM Transactions on Programming Languages and Systems, 2007, 29, 31.	2.1	20

#	ARTICLE vent structures and the linear <mml:math <="" altimg="sil.gif" display="inline" overflow="scroll" th="" xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XiviLSchema"><th>IF</th><th>Citations</th></mml:math>	IF	Citations
109	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier	0.9	20
110	Pabble: parameterised Scribble. Service Oriented Computing and Applications, 2015, 9, 269-284.	1.6	20
111	Verifying message-passing programs with dependent behavioural types. , 2019, , .		20
112	Descriptive and Relative Completeness of Logics for Higher-Order Functions. Lecture Notes in Computer Science, 2006, , 360-371.	1.3	20
113	Verifying Asynchronous Interactions via Communicating Session Automata. Lecture Notes in Computer Science, 2019, , 97-117.	1.3	20
114	Event Structure Semantics of Parallel Extrusion in the Pi-Calculus. Lecture Notes in Computer Science, 2012, , 225-239.	1.3	20
115	Asynchronous Distributed Monitoring for Multiparty Session Enforcement. Lecture Notes in Computer Science, 2012, , 25-45.	1.3	20
116	SPY: Local Verification of Global Protocols. Lecture Notes in Computer Science, 2013, , 358-363.	1.3	20
117	Inhibition of Host Cell Lysosome Spreading by Trypanosoma cruzi Metacyclic Stage-Specific Surface Molecule gp90 Downregulates Parasite Invasion. Infection and Immunity, 2017, 85, .	2.2	19
118	Assigning Types to Processes. Information and Computation, 2002, 174, 143-179.	0.7	18
119	Two Session Typing Systems for Higher-Order Mobile Processes. Lecture Notes in Computer Science, 2007, , 321-335.	1.3	18
120	Reversible session-based pi-calculus. Journal of Logical and Algebraic Methods in Programming, 2015, 84, 684-707.	0.5	18
121	Host cell invasion and oral infection by Trypanosoma cruzi strains of genetic groups Tcl and TclV from chagasic patients. Parasites and Vectors, 2016, 9, 189.	2.5	18
122	Precise subtyping for synchronous multiparty sessions. Journal of Logical and Algebraic Methods in Programming, 2019, 104, 127-173.	0.5	18
123	safeDpi: A Language for Controlling Mobile Code. Lecture Notes in Computer Science, 2004, , 241-256.	1.3	18
124	Multiparty Session Actors. Lecture Notes in Computer Science, 2014, , 131-146.	1.3	18
125	Statically verified refinements for multiparty protocols. , 2020, 4, 1-30.		18
126	Expression and genome-wide distribution of the gene family encoding a 90 kDa surface glycoprotein of metacyclic trypomastigotes of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2002, 125, 201-206.	1.1	17

#	Article	IF	CITATIONS
127	Unique behavior of Trypanosoma dionisii interacting with mammalian cells: Invasion, intracellular growth, and nuclear localization. Acta Tropica, 2009, 110, 65-74.	2.0	17
128	Session-Based Communication Optimisation for Higher-Order Mobile Processes. Lecture Notes in Computer Science, 2009, , 203-218.	1.3	17
129	Optimal reduction in weak-l̂»-calculus with shared environments. , 1993, , .		16
130	Fibronectin-Degrading Activity of Trypanosoma cruzi Cysteine Proteinase Plays a Role in Host Cell Invasion. Infection and Immunity, 2014, 82, 5166-5174.	2.2	16
131	Surface Molecules Released by Trypanosoma cruzi Metacyclic Forms Downregulate Host Cell Invasion. PLoS Neglected Tropical Diseases, 2016, 10, e0004883.	3.0	16
132	Global escape in multiparty sessions. Mathematical Structures in Computer Science, 2016, 26, 156-205.	0.6	16
133	Linearity and Bisimulation. Lecture Notes in Computer Science, 2002, , 417-433.	1.3	16
134	A Distributed Abstract Machine for Boxed Ambient Calculi. Lecture Notes in Computer Science, 2004, , 155-170.	1.3	16
135	Timed, Distributed, Probabilistic, Typed Processes. , 2007, , 158-174.		16
136	Structuring Communication with Session Types. Lecture Notes in Computer Science, 2014, , 105-127.	1.3	16
137	Immune responses to gp82 provide protection against mucosal Trypanosoma cruzi infection. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 687-691.	1.6	15
138	On asynchronous eventful session semantics. Mathematical Structures in Computer Science, 2016, 26, 303-364.	0.6	15
139	Fencing off go: liveness and safety for channel-based programming. ACM SIGPLAN Notices, 2017, 52, 748-761.	0.2	15
140	Bounded Session Types for Object Oriented Languages. Lecture Notes in Computer Science, 2007, , 207-245.	1.3	15
141	Linearity and bisimulation. The Journal of Logic and Algebraic Programming, 2007, 72, 207-238.	1.4	14
142	Synchronous Multiparty Session Types. Electronic Notes in Theoretical Computer Science, 2009, 241, 3-33.	0.9	14
143	Session-Based Compilation Framework for Multicore Programming. Lecture Notes in Computer Science, 2009, , 226-246.	1.3	14
144	Globally Governed Session Semantics. Logical Methods in Computer Science, 0, Volume 10, Issue 4, .	0.4	14

#	Article	IF	Citations
145	Dynamic deadlock verification for general barrier synchronisation. , 2015, , .		13
146	Session-ocaml: A session-based library with polarities and lenses. Science of Computer Programming, 2019, 172, 135-159.	1.9	13
147	Precise subtyping for asynchronous multiparty sessions. , 2021, 5, 1-28.		13
148	Logical Reasoning for Higher-Order Functions with Local State. , 2007, , 361-377.		13
149	On Asynchronous Session Semantics. Lecture Notes in Computer Science, 2011, , 228-243.	1.3	13
150	Probabilistic π-Calculus and Event Structures. Electronic Notes in Theoretical Computer Science, 2007, 190, 147-166.	0.9	12
151	A Cytoplasmic New Catalytic Subunit of Calcineurin in Trypanosoma cruzi and Its Molecular and Functional Characterization. PLoS Neglected Tropical Diseases, 2014, 8, e2676.	3.0	12
152	Pabble: Parameterised Scribble for Parallel Programming. , 2014, , .		12
153	Depletion of Host Cell Focal Adhesion Kinase Increases the Susceptibility to Invasion by Trypanosoma cruzi Metacyclic Forms. Frontiers in Cellular and Infection Microbiology, 2019, 9, 231.	3.9	12
154	Developing secure bitcoin contracts with BitML., 2019,,.		12
155	Communication-safe web programming in TypeScript with routed multiparty session types. , 2021, , .		12
156	Asynchronous Session Types: Exceptions and Multiparty Interactions. Lecture Notes in Computer Science, 2009, , 187-212.	1.3	12
157	Verification of MPI Programs Using Session Types. Lecture Notes in Computer Science, 2012, , 291-293.	1.3	12
158	Typed Event Structures and the π-Calculus. Electronic Notes in Theoretical Computer Science, 2006, 158, 373-397.	0.9	11
159	Certifying data in multiparty session types. Journal of Logical and Algebraic Methods in Programming, 2017, 90, 61-83.	0.5	11
160	Two sides of the same coin: session types and game semantics: a synchronous side and an asynchronous side., 2019, 3, 1-29.		11
161	Implementing Multiparty Session Types in Rust. Lecture Notes in Computer Science, 2020, , 127-136.	1.3	11
162	Effects as sessions, sessions as effects. ACM SIGPLAN Notices, 2016, 51, 568-581.	0.2	11

#	Article	IF	Citations
163	Multiparty Symmetric Sum Types. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 41, 121-135.	0.8	11
164	Noninterference through flow analysis. Journal of Functional Programming, 2005, 15, 293-349.	0.8	10
165	Expression and Cellular Localization of Molecules of the gp82 Family in Trypanosoma cruzi Metacyclic Trypomastigotes. Infection and Immunity, 2007, 75, 3264-3270.	2.2	10
166	Theoretical Aspects of Communication-Centred Programming. Electronic Notes in Theoretical Computer Science, 2008, 209, 125-133.	0.9	10
167	Zooid: a DSL for certified multiparty computation: from mechanised metatheory to certified multiparty processes., 2021,,.		10
168	A Very Gentle Introduction to Multiparty Session Types. Lecture Notes in Computer Science, 2020, , 73-93.	1.3	10
169	Compositional Event Structure Semantics for the Internal π-Calculus. Lecture Notes in Computer Science, 2007, , 317-332.	1.3	10
170	Safe Parallel Programming with Session Java. Lecture Notes in Computer Science, 2011, , 110-126.	1.3	10
171	On the Relative Expressiveness of Higher-Order Session Processes. Lecture Notes in Computer Science, 2016, , 446-475.	1.3	10
172	Multiparty motion coordination: from choreographies to robotics programs. , 2020, 4, 1-30.		10
173	CAMP: cost-aware multiparty session protocols. , 2020, 4, 1-30.		10
174	A uniform type structure for secure information flow. ACM SIGPLAN Notices, 2002, 37, 81-92.	0.2	10
175	Precise subtyping for synchronous multiparty sessions. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 203, 29-43.	0.8	10
176	Dynamic Channel Screening in the Higher Order π-Calculus. Electronic Notes in Theoretical Computer Science, 2002, 66, 170-184.	0.9	9
177	Asynchronous Timed Session Types. Lecture Notes in Computer Science, 2019, , 583-610.	1.3	9
178	Characteristic Formulae for Session Types. Lecture Notes in Computer Science, 2016, , 833-850.	1.3	9
179	Timed Runtime Monitoring for Multiparty Conversations. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 162, 19-26.	0.8	9
180	Exploring Type-Level Bisimilarity towards More Expressive Multiparty Session Types. Lecture Notes in Computer Science, 2020, , 251-279.	1.3	9

#	Article	IF	CITATIONS
181	Minimality and separation results on asynchronous mobile processes $\hat{a} \in \text{``representability theorems by concurrent combinators. Theoretical Computer Science, 2002, 274, 231-276.}$	0.9	8
182	Formalising Java RMI with explicit code mobility. Theoretical Computer Science, 2007, 389, 341-410.	0.9	8
183	The gp82 Surface Molecule of Trypanosoma cruzi Metacyclic Forms. Sub-Cellular Biochemistry, 2014, 74, 137-150.	2.4	8
184	Interaction of Trypanosoma cruzi Gp82 With Host Cell LAMP2 Induces Protein Kinase C Activation and Promotes Invasion. Frontiers in Cellular and Infection Microbiology, 2021, 11, 627888.	3.9	8
185	Event structure semantics of (controlled) reversible CCS. Journal of Logical and Algebraic Methods in Programming, 2021, 121, 100686.	0.5	8
186	EMTST: Engineering the Meta-theory of Session Types. Lecture Notes in Computer Science, 2020, , 278-285.	1.3	8
187	Session-ocaml: A Session-Based Library with Polarities and Lenses. Lecture Notes in Computer Science, 2017, , 99-118.	1.3	8
188	Depending on Session-Typed Processes. Lecture Notes in Computer Science, 2018, , 128-145.	1.3	8
189	Event Structure Semantics of (controlled) Reversible CCS. Lecture Notes in Computer Science, 2018, , 102-122.	1.3	8
190	Logical Reasoning for Higher-Order Functions with Local State. Logical Methods in Computer Science, 0, Volume 4, Issue 4, .	0.4	8
191	An observationally complete program logic for imperative higher-order functions. Theoretical Computer Science, 2014, 517, 75-101.	0.9	7
192	Effpi., 2019,,.		7
193	A parametric framework for reversible π-calculi. Information and Computation, 2020, 275, 104644.	0.7	7
194	Safe Session-Based Asynchronous Coordination in Rust. Lecture Notes in Computer Science, 2021, , 80-89.	1.3	7
195	Genericity and the π-Calculus. Lecture Notes in Computer Science, 2003, , 103-119.	1.3	7
196	Featherweight Scribble. Lecture Notes in Computer Science, 2019, , 236-259.	1.3	7
197	Multiparty Session Type-safe Web Development with Static Linearity. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 291, 35-46.	0.8	7
198	A Multiparty Multi-session Logic. Lecture Notes in Computer Science, 2013, , 97-111.	1.3	7

#	Article	IF	CITATIONS
199	On reduction-based process semantics. Lecture Notes in Computer Science, 1993, , 373-387.	1.3	7
200	Deadlock-free asynchronous message reordering in rust with multiparty session types. , 2022, , .		7
201	On the relative expressiveness of higher-order session processes. Information and Computation, 2019, 268, 104433.	0.7	6
202	Towards a categorical representation of reversible event structures. Journal of Logical and Algebraic Methods in Programming, 2019, 104, 16-59.	0.5	6
203	Communicating Finite State Machines and an Extensible Toolchain forÂMultiparty Session Types. Lecture Notes in Computer Science, 2021, , 18-35.	1.3	6
204	Polymorphic Session Processes asÂMorphisms. Lecture Notes in Computer Science, 2019, , 101-117.	1.3	6
205	On Observing Dynamic Prioritised Actions in SOC. Lecture Notes in Computer Science, 2009, , 558-570.	1.3	6
206	Compiling first-order functions to session-typed parallel code. , 2020, , .		6
207	Featherweight go. , 2020, 4, 1-29.		6
208	Oral infection of mice and host cell invasion by Trypanosoma cruzi strains from Mexico. Parasitology Research, 2019, 118, 1493-1500.	1.6	5
209	Reversing Single Sessions. Lecture Notes in Computer Science, 2016, , 52-69.	1.3	5
210	On Polymorphic Sessions and Functions. Lecture Notes in Computer Science, 2018, , 827-855.	1.3	5
211	Trustworthy Pervasive Healthcare Services via Multiparty Session Types. Lecture Notes in Computer Science, 2013, , 124-141.	1.3	5
212	Interconnectability of Session-Based Logical Processes. ACM Transactions on Programming Languages and Systems, 2018, 40, 1-42.	2.1	5
213	Towards Reversible Sessions. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 155, 17-24.	0.8	5
214	Session types. Computer Architecture News, 2012, 40, 22-27.	2.5	4
215	Causal Computational Complexity of Distributed Processes. , 2018, , .		4
216	Multiparty session types, beyond duality. Journal of Logical and Algebraic Methods in Programming, 2018, 97, 55-84.	0.5	4

#	Article	IF	Citations
217	Signal peptide recognition in Trypanosoma cruzi GP82 adhesin relies on its localization at protein N-terminus. Scientific Reports, 2019, 9, 7325.	3.3	4
218	Globally Governed Session Semantics. Lecture Notes in Computer Science, 2013, , 395-409.	1.3	4
219	Towards a Categorical Representation of Reversible Event Structures. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 246, 49-60.	0.8	4
220	Generating Interactive WebSocket Applications in TypeScript. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 314, 12-22.	0.8	4
221	A logical analysis of aliasing in imperative higher-order functions. Journal of Functional Programming, 2007, 17, 473-546.	0.8	3
222	Type-Directed Compilation for Multicore Programming. Electronic Notes in Theoretical Computer Science, 2009, 241, 101-111.	0.9	3
223	Beta-adrenergic antagonist propranolol inhibits mammalian cell lysosome spreading and invasion by Trypanosoma cruzi metacyclic forms. Microbes and Infection, 2017, 19, 295-301.	1.9	3
224	Dynamic Deadlock Verification for General Barrier Synchronisation. ACM Transactions on Programming Languages and Systems, 2019, 41, 1-38.	2.1	3
225	On Polymorphic Sessions and Functions. ACM Transactions on Programming Languages and Systems, 2021, 43, 1-55.	2.1	3
226	Scalable Session Programming for Heterogeneous High-Performance Systems. Lecture Notes in Computer Science, 2014, , 82-98.	1.3	3
227	Type Checking Liveness for Collaborative Processes with Bounded and Unbounded Recursion. Lecture Notes in Computer Science, 2014, , 1-16.	1.3	3
228	Multiparty Session Nets. Lecture Notes in Computer Science, 2014, , 112-127.	1.3	3
229	Type-checking Liveness for Collaborative Processes with Bounded and Unbounded Recursion. Logical Methods in Computer Science, 0, Volume 12, Issue 1, .	0.4	3
230	Session-Based Programming for Parallel Algorithms: Expressiveness and Performance. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 17, 17-29.	0.8	3
231	Denotational and Operational Preciseness of Subtyping: A Roadmap. Lecture Notes in Computer Science, 2016, , 155-172.	1.3	3
232	A Parametric Framework for Reversible Pi-Calculi. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 276, 87-103.	0.8	3
233	A logical analysis of aliasing in imperative higher-order functions. ACM SIGPLAN Notices, 2005, 40, 280-293.	0.2	2
234	A Symbolic Semantics for a Calculus for Service-Oriented Computing. Electronic Notes in Theoretical Computer Science, 2009, 241, 135-164.	0.9	2

#	Article	IF	Citations
235	Causality in Linear Logic. Lecture Notes in Computer Science, 2019, , 150-168.	1.3	2
236	Event structures for the reversible early internal π-calculus. Journal of Logical and Algebraic Methods in Programming, 2022, 124, 100720.	0.5	2
237	Process Types as a Descriptive Tool for Interaction. Lecture Notes in Computer Science, 2014, , 1-20.	1.3	2
238	Certifying Data in Multiparty Session Types. Lecture Notes in Computer Science, 2016, , 433-458.	1.3	2
239	Using session types as an effect system. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 203, 1-13.	0.8	2
240	Intensional and Extensional Characterisation of Global Progress in the π-Calculus. Lecture Notes in Computer Science, 2012, , 287-301.	1.3	2
241	EURECA compilation: Automatic optimisation of cycle-reconfigurable circuits. , 2016, , .		1
242	Event Structures for the Reversible Early Internal \$\$pi \$\$-Calculus. Lecture Notes in Computer Science, 2020, , 71-90.	1.3	1
243	Shedding of Trypanosoma cruzi Surface Molecules That Regulate Host Cell Invasion Involves Phospholipase C and Increases Upon Sterol Depletion. Frontiers in Cellular and Infection Microbiology, 2021, 11, 769722.	3.9	1
244	Towards a Formal Account for Software Transactional Memory. Lecture Notes in Computer Science, 2020, , 255-263.	1.3	1
245	Channel dependent types for higher-order mobile processes. ACM SIGPLAN Notices, 2004, 39, 147-160.	0.2	0
246	Formalising Java RMI with explicit code mobility. ACM SIGPLAN Notices, 2005, 40, 403-422.	0.2	0
247	Type-Based Security for Mobile Computing Integrity, Secrecy and Liveness. Electronic Notes in Theoretical Computer Science, 2006, 162, 333-340.	0.9	0
248	Secure Execution of Distributed Session Programs. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 69, 1-11.	0.8	0
249	Multiparty Session Types, Beyond Duality (Abstract). Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 246, 37-38.	0.8	0
250	Service Equivalence via Multiparty Session Type Isomorphisms. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 291, 1-11.	0.8	0