Palanisamy Deepa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/153934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rising trend on the halogen and non-halogen derivatives (Br, Cl, CF ₃ , F, CH ₃) Tj ETQq1 Biomolecular Structure and Dynamics, 2022, 40, 449-467.	1 0.78431 3.5	l 4 rgBT /Ove 1
2	Understanding the impact of anticancer halogenated inhibitors and various functional groups (X = Cl,) T Biomolecular Structure and Dynamics, 2022, 40, 5036-5052.	j ETQq0 0 3.5	0 rgBT /Ove 1
3	A quantum chemical perspective on the potency of electron donors and acceptors in pnicogen bonds (ASN, PN, NN). Journal of Molecular Modeling, 2020, 26, 11.	1.8	5
4	Understanding the potency of malarial ligand (D44) in plasmodium FKBP35 and modelled halogen atom (Br, Cl, F) functional groups. Journal of Molecular Graphics and Modelling, 2020, 97, 107553.	2.4	5
5	Does the stability of the stacking motif surpass the planar motif in 2-amino-4-nitrophenol? — a CCSD(T) analysis. Journal of Molecular Modeling, 2019, 25, 6.	1.8	1
6	An overview about the impact of hinge region towards the anticancer binding affinity of the Ck2 ligands: a quantum chemical analysis. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3859-3876.	3.5	3
7	Does the presence of water clusters induce the binding affinity of CK2 halogen ligands?: A quantum chemical perspective study. International Journal of Quantum Chemistry, 2018, 118, e25644.	2.0	6
8	Synthesis and Experimental Studies on Supramolecular Synthons of Aminoguanidinium Carboxylates: A Case Study of I€â€HoleBonded Carbon Bonding via Theoretical Approaches. ChemistrySelect, 2018, 3, 10032-10048.	1.5	1
9	Hybrid DFT study on non-covalent interactions and their influence on pKa's of magnesium-carboxylate complexes. Journal of Molecular Graphics and Modelling, 2018, 85, 13-24.	2.4	5
10	An Overview of the Factors Influencing CK2 Ligands and the Impact of Crystal Waters: A Theoretical Study. Crystal Growth and Design, 2017, 17, 1299-1315.	3.0	8
11	Understanding the potency of fatty acids with the amino acid side chains of bovine β lactoglobulin—A quantum chemical approach. Journal of Molecular Graphics and Modelling, 2017, 74, 105-116.	2.4	7
12	Understanding the nature of Metal Oxalato Complexes with Purine Nucleobase- A Quantum Chemical approach. International Journal of Molecular and Theoretical Physics, 2017, 1, 1-10.	0.3	0
13	Topological analysis of metal–ligand and hydrogen bonds in transition metal hybrid structures – A computational study. Polyhedron, 2016, 115, 193-203.	2.2	4
14	Studies on the σ–hole bonds (halogen, chalcogen, pnicogen and carbon bonds) based on the orientation of crystal structure. Molecular Physics, 2016, 114, 3629-3642.	1.7	20
15	Does the occurrence of resonance (by the delocalization of radical/cationic/anionic charges) induce the existence of intramolecular halogen–halogen contacts?. RSC Advances, 2016, 6, 66870-66878.	3.6	6
16	Do resonance-assisted intramolecular halogen bonds exist without a charge transfer and a σ-hole?. Physical Chemistry Chemical Physics, 2015, 17, 27496-27508.	2.8	26
17	Characteristics of a Ïf-Hole and the Nature of a Halogen Bond. Topics in Current Chemistry, 2014, 359, 1-25.	4.0	19
18	On the origin of the substantial stabilisation of the electron-donor 1,3-dithiole-2-thione-4-carboxyclic acidâ<7 ₂ complexes. Physical Chemistry Chemical Physics, 2014, 16, 6679-6686.	2.8	31

PALANISAMY DEEPA

#	Article	IF	CITATIONS
19	On the nature of non-covalent interactions in isomers of 2,5-dichloro-1,4-benzoquinone dimers – ground- and excited-state properties. Physical Chemistry Chemical Physics, 2014, 16, 19928-19940.	2.8	16
20	Halogen bonds in crystal TTF derivatives: an ab initio quantum mechanical study. Physical Chemistry Chemical Physics, 2014, 16, 2038-2047.	2.8	46
21	The nature of hydrogen bonding in <i>R</i> ² ₂ (8) crystal motifs – a computational exploration. Molecular Physics, 2014, 112, 3195-3205.	1.7	14
22	A theoretical perspective of the nature of hydrogen-bond types – the atoms in molecules approach. Molecular Physics, 2014, 112, 1609-1623.	1.7	15
23	Why Is the L-Shaped Structure of X ₂ ···X ₂ (X = F, Cl, Br, I) Complexes More Stable Than Other Structures?. Journal of Physical Chemistry A, 2014, 118, 3846-3855.	2.5	21
24	Structural properties and the effect of platinum drugs with DNA base pairs. Structural Chemistry, 2013, 24, 583-595.	2.0	13
25	Theoretical investigation of interaction between psoralen and altretamine with stacked DNA base pairs. Materials Science and Engineering C, 2012, 32, 423-431.	7.3	25
26	Hydrogen-bonding studies of amino acid side-chains with DNA base pairs. Molecular Physics, 2011, 109, 1995-2008.	1.7	10
27	Structural properties and the effect of 2,6â€diaminoanthraquinone on Gâ€ŧetrad, nonâ€Gâ€ŧetrads, and mixed tetrads—A density functional theory study. International Journal of Quantum Chemistry, 2011, 111, 3239-3250.	2.0	8
28	First and second coordination spheres in 8-azaxanthinato salts of divalent metal aquacomplexes – Ab initio and DFT study. Polyhedron, 2011, 30, 1431-1445.	2.2	8
29	Interactions of anticancer drugs with usual and mismatch base pairs — Density functional theory studies. Biophysical Chemistry, 2008, 136, 50-58.	2.8	26
30	Studies on Tautomeric Forms of Guanine-Cytosine Base Pairs of Nucleic Acids and Their Interactions with Water Molecules. Journal of Biomolecular Structure and Dynamics, 2008, 25, 733-746.	3.5	15