
Ennio Iezzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1539194/publications.pdf Version: 2024-02-01

ENNIO IEZZI

#	Article	IF	CITATIONS
1	Multiple sclerosis: Inflammation, autoimmunity and plasticity. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 457-470.	1.8	9
2	Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules, 2022, 12, 222.	4.0	21
3	The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes, 2022, 13, 332.	2.4	5
4	Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes, 2022, 13, 897.	2.4	3
5	Age at Disease Onset Associates With Oxidative Stress, Neuroinflammation, and Impaired Synaptic Plasticity in Relapsing-Remitting Multiple Sclerosis. Frontiers in Aging Neuroscience, 2021, 13, 694651.	3.4	9
6	Obesity worsens central inflammation and disability in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1237-1246.	3.0	72
7	Practice-dependent motor cortex plasticity is reduced in non-disabled multiple sclerosis patients. Clinical Neurophysiology, 2020, 131, 566-573.	1.5	13
8	Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity. International Journal of Molecular Sciences, 2020, 21, 143.	4.1	9
9	Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 6982.	4.1	9
10	Cerebrospinal fluid inflammatory biomarkers predicting interferon-beta response in MS patients. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642097083.	3.5	5
11	IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 120.	3.7	32
12	Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Perspective. Frontiers in Neurology, 2020, 11, 566.	2.4	14
13	Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabilitation and Neural Repair, 2019, 33, 825-835.	2.9	26
14	Transient Receptor Potential Vanilloid 1 Modulates Central Inflammation in Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 30.	2.4	33
15	Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. International Journal of Molecular Sciences, 2019, 20, 6193.	4.1	78
16	Can pharmacological manipulation of LTP favor the effects of motor rehabilitation in multiple sclerosis?. Multiple Sclerosis Journal, 2018, 24, 902-907.	3.0	5
17	Exploiting the Multifaceted Effects of Cannabinoids on Mood to Boost Their Therapeutic Use Against Anxiety and Depression. Frontiers in Molecular Neuroscience, 2018, 11, 424.	2.9	34
18	Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. Journal of Neurology, 2018, 265, 2540-2547.	3.6	38

Ennio Iezzi

#	Article	IF	CITATIONS
19	Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis. Journal of Neuroinflammation, 2018, 15, 108.	7.2	22
20	Reliability and repeatability of testing visual evoked potential habituation in migraine: A blinded case–control study. Cephalalgia, 2017, 37, 418-422.	3.9	24
21	Cannabinoids in Parkinson's Disease. Cannabis and Cannabinoid Research, 2017, 2, 21-29.	2.9	71
22	Neurophysiology of synaptic functioning in multiple sclerosis. Clinical Neurophysiology, 2017, 128, 1148-1157.	1.5	50
23	Effects of postural exercises in patients with Parkinson's disease and Pisa syndrome: A pilot study. NeuroRehabilitation, 2017, 41, 423-428.	1.3	13
24	Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach. Frontiers in Neuroscience, 2017, 11, 710.	2.8	15
25	Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2017, 10, 390.	2.9	21
26	Improvement of lateral axial dystonia following prismatic correction of oculomotor control disorders in Parkinson's disease. Journal of Neurology, 2016, 263, 403-404.	3.6	2
27	Correlation between habituation of visual-evoked potentials and magnetophosphene thresholds in migraine: A case-control study. Cephalalgia, 2016, 36, 258-264.	3.9	21
28	Does the cerebellum intervene in the abnormal somatosensory temporal discrimination in Parkinson's disease?. Parkinsonism and Related Disorders, 2015, 21, 789-792.	2.2	26
29	Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 1061-1066.	2.2	45
30	Congenital Mirror Movements in a New Italian Family. Movement Disorders Clinical Practice, 2014, 1, 180-187.	1.5	8
31	Short-term and long-term plasticity interaction in human primary motor cortex. European Journal of Neuroscience, 2011, 33, 1908-1915.	2.6	37
32	Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. Experimental Brain Research, 2011, 212, 91-99.	1.5	120
33	Thetaâ€burst stimulation over primary motor cortex degrades early motor learning. European Journal of Neuroscience, 2010, 31, 585-592.	2.6	45
34	Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson's disease. Brain, 2010, 133, 2656-2663.	7.6	80
35	Effects of attention on inhibitory and facilitatory phenomena elicited by paired-pulse transcranial magnetic stimulation in healthy subjects. Experimental Brain Research, 2008, 186, 393-399.	1.5	30
36	Ipsilateral sequential arm movements after unilateral subthalamic deepâ€brain stimulation in patients with Parkinson's disease. Movement Disorders, 2008, 23, 1718-1724.	3.9	16

Ennio Iezzi

#	Article	IF	CITATIONS
37	Effects of intermittent thetaâ€burst stimulation on practiceâ€related changes in fast finger movements in healthy subjects. European Journal of Neuroscience, 2008, 28, 822-828.	2.6	38
38	Phasic Voluntary Movements Reverse the Aftereffects of Subsequent Theta-Burst Stimulation in Humans. Journal of Neurophysiology, 2008, 100, 2070-2076.	1.8	136
39	Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects. Experimental Brain Research, 2007, 180, 105-111.	1.5	40
40	Attention influences the excitability of cortical motor areas in healthy humans. Experimental Brain Research, 2007, 182, 109-117.	1.5	92