Chao Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1538890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 2020, 15, 73-79.	15.6	111
2	Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nature Communications, 2018, 9, 2294.	5.8	95
3	Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules. Angewandte Chemie - International Edition, 2016, 55, 9723-9727.	7.2	78
4	Highly Selective Artificial Potassium Ion Channels Constructed from Pore ontaining Helical Oligomers. Angewandte Chemie - International Edition, 2017, 56, 12668-12671.	7.2	68
5	Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nature Materials, 2020, 19, 347-354.	13.3	59
6	Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel. Biomacromolecules, 2017, 18, 1885-1892.	2.6	53
7	Nanostructured block copolymer muscles. Nature Nanotechnology, 2022, 17, 752-758.	15.6	53
8	Design Considerations for Artificial Water Channel–Based Membranes. Annual Review of Materials Research, 2018, 48, 57-82.	4.3	40
9	Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes. ACS Nano, 2019, 13, 8292-8302.	7.3	37
10	Highly Selective Artificial Potassium Ion Channels Constructed from Pore ontaining Helical Oligomers. Angewandte Chemie, 2017, 129, 12842-12845.	1.6	33
11	Semithiobambus[6]uril is a transmembrane anion transporter. Chemical Communications, 2017, 53, 7557-7560.	2.2	32
12	Solvent-non-solvent rapid-injection for preparing nanostructured materials from micelles to hydrogels. Nature Communications, 2019, 10, 3855.	5.8	30
13	A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity. Soft Matter, 2014, 10, 3374.	1.2	23
14	Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules. Angewandte Chemie, 2016, 128, 9875-9879.	1.6	20
15	Construction of supramolecular polymer by enzyme-triggered covalent condensation of CB[8]-FGG-based supramonomer. Chemical Communications, 2016, 52, 2083-2086.	2.2	20
16	Powerful Bipodal Anion Transporters Based on Scaffolds That Contain Different Chalcogens. European Journal of Organic Chemistry, 2015, 2015, 6458-6465.	1.2	15
17	Selenium-containing organic nanoparticles as silent precursors for ultra-sensitive thiol-responsive transmembrane anion transport. Nanoscale, 2016, 8, 2960-2966.	2.8	15
18	Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discussions, 2018, 209, 179-191.	1.6	15

Chao Lang

#	Article	IF	CITATIONS
19	Unique selectivity trends of highly permeable PAP[5] water channel membranes. Faraday Discussions, 2018, 209, 193-204.	1.6	13
20	A smart artificial glutathione peroxidase with temperature responsive activity constructed by host–guest interaction and self-assembly. RSC Advances, 2014, 4, 25040-25050.	1.7	9
21	Influence of block sequence on the colloidal self-assembly of poly(norbornene)- <i>block</i> -poly(ethylene oxide) amphiphilic block polymers using rapid injection processing. Polymer Chemistry, 2020, 11, 375-384.	1.9	9
22	Current status and future directions of self-assembled block copolymer membranes for molecular separations. Soft Matter, 2021, 17, 10405-10415.	1.2	8
23	Single-Molecule Observation of Selenoenzyme Intermediates in a Semisynthetic Seleno-α-Hemolysin Nanoreactor. Analytical Chemistry, 2022, 94, 8433-8440.	3.2	6
24	Environment Responsive Hydrogels. , 2016, , 251-280.		1

Environment Responsive Hydrogels. , 2016, , 251-280. 24