Ryo Nagao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1538822/publications.pdf

Version: 2024-02-01

77	1,978 citations	236925	289244 40 g-index
papers	citations	h-index	g-index
81 all docs	81 docs citations	81 times ranked	1284 citing authors

#	Article	IF	CITATIONS
1	Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynthesis Research, 2008, 98, 349-363.	2.9	127
2	Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1353-1362.	1.0	94
3	Structural basis for energy harvesting and dissipation in a diatom PSII–FCPII supercomplex. Nature Plants, 2019, 5, 890-901.	9.3	92
4	Redox potential of pheophytin <i>a</i> in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3924-3929.	7.1	88
5	Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nature Communications, 2020, 11, 238.	12.8	75
6	Fourier Transform Infrared Detection of a Polarizable Proton Trapped between Photooxidized Tyrosine Y _Z and a Coupled Histidine in Photosystem II: Relevance to the Proton Transfer Mechanism of Water Oxidation. Biochemistry, 2014, 53, 3131-3144.	2.5	71
7	Redox potential of the terminal quinone electron acceptor Q $<$ sub $>$ B $<$ /sub $>$ in photosystem II reveals the mechanism of electron transfer regulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 620-625.	7.1	66
8	Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynthesis Research, 2013, 117, 281-288.	2.9	65
9	Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 160-166.	1.0	63
10	Monitoring the Reaction Process During the S ₂ → S ₃ Transition in Photosynthetic Water Oxidation Using Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2017, 139, 2022-2029.	13.7	57
11	High Excitation Energy Quenching in Fucoxanthin Chlorophyll <i>a</i> /ci>c-Binding Protein Complexes from the Diatom Chaetoceros gracilis. Journal of Physical Chemistry B, 2013, 117, 6888-6895.	2.6	56
12	Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. Nature Communications, 2020, 11, 2481.	12.8	56
13	Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nature Communications, 2019, 10, 4929.	12.8	50
14	D1-Asn-298 in photosystem II is involved in a hydrogen-bond network near the redox-active tyrosine YZ for proton exit during water oxidation. Journal of Biological Chemistry, 2017, 292, 20046-20057.	3.4	42
15	Binding and Functional Properties of Five Extrinsic Proteins in Oxygen-evolving Photosystem II from a Marine Centric Diatom, Chaetoceros gracilis*. Journal of Biological Chemistry, 2010, 285, 29191-29199.	3.4	41
16	Excitation relaxation dynamics and energy transfer in fucoxanthin–chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1514-1521.	1.0	41
17	Light-Harvesting Ability of the Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Protein Associated with Photosystem II from the Diatom <i>Chaetoceros gracilis</i> As Revealed by Picosecond Time-Resolved Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 5093-5100.	2.6	38
18	Topological Analysis of the Extrinsic PsbO, PsbP and PsbQ Proteins in a Green Algal PSII Complex by Cross-Linking with a Water-Soluble Carbodiimide. Plant and Cell Physiology, 2010, 51, 718-727.	3.1	35

#	Article	IF	Citations
19	Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 2110-2117.	1.0	33
20	Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus. Journal of Biological Chemistry, 2018, 293, 14786-14797.	3.4	31
21	Control Mechanism of Excitation Energy Transfer in a Complex Consisting of Photosystem II and Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> /i>-Binding Protein. Journal of Physical Chemistry Letters, 2014, 5, 2983-2987.	4.6	30
22	Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins. Communications Biology, 2020, 3, 232.	4.4	30
23	A novel protein in Photosystem II of a diatom Chaetoceros gracilis is one of the extrinsic proteins located on lumenal side and directly associates with PSII core components. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1545-1551.	1.0	29
24	Regulation of excitation energy transfer in diatom PSII dimer: How does it change the destination of excitation energy?. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1274-1282.	1.0	29
25	Speciesâ€dependence of the redox potential of the primary quinone electron acceptor Q _A in photosystem II verified by spectroelectrochemistry. FEBS Letters, 2010, 584, 1526-1530.	2.8	28
26	Genetically introduced hydrogen bond interactions reveal an asymmetric charge distribution on the radical cation of the special-pair chlorophyll P680. Journal of Biological Chemistry, 2017, 292, 7474-7486.	3.4	28
27	Crystal Structure of Psb31, a Novel Extrinsic Protein of Photosystem II from a Marine Centric Diatom and Implications for Its Binding and Function. Biochemistry, 2013, 52, 6646-6652.	2.5	27
28	The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b559 in photosystem II. Scientific Reports, 2016, 6, 21490.	3.3	24
29	Identification of the basic amino acid residues on the PsbP protein involved in the electrostatic interaction with photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1447-1453.	1.0	21
30	Low-Energy Chlorophylls in Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Protein Conduct Excitation Energy Transfer to Photosystem I in Diatoms. Journal of Physical Chemistry B, 2019, 123, 66-70.	2.6	20
31	Proton and Water Transfer Pathways in the S ₂ → S ₃ Transition of the Water-Oxidizing Complex in Photosystem II: Time-Resolved Infrared Analysis of the Effects of D1-N298A Mutation and NO ₃ [–] Substitution. Journal of Physical Chemistry B, 2021, 125, 6864-6873.	2.6	20
32	Effects of Extrinsic Proteins on the Protein Conformation of the Oxygen-Evolving Center in Cyanobacterial Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy. Biochemistry, 2015, 54, 2022-2031.	2.5	19
33	Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Photosynthesis Research, 2019, 140, 141-149.	2.9	19
34	Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. Photosynthesis Research, 2020, 146, 227-234.	2.9	19
35	Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 524-530.	1.0	18
36	Role of the O4 Channel in Photosynthetic Water Oxidation as Revealed by Fourier Transform Infrared Difference and Time-Resolved Infrared Analysis of the D1-S169A Mutant. Journal of Physical Chemistry B, 2020, 124, 1470-1480.	2.6	18

#	Article	IF	CITATIONS
37	Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 754-759.	1.0	17
38	Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Photosynthesis Research, 2019, 141, 355-365.	2.9	17
39	Excitation-Energy Transfer and Quenching in Diatom PSI-FCPI upon P700 Cation Formation. Journal of Physical Chemistry B, 2020, 124, 1481-1486.	2.6	17
40	Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. Nature Communications, 2022, 13, 1764.	12.8	17
41	Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Red Algal Photosystem II As Revealed by Light-Induced FTIR Difference Spectroscopy. Biochemistry, 2013, 52, 5705-5707.	2.5	16
42	Structure-Based Modeling of Fluorescence Kinetics of PhotosystemÂll: Relation between Its Dimeric Form and Photoregulation. Journal of Physical Chemistry B, 2016, 120, 365-376.	2.6	16
43	Effects of CO2 and temperature on photosynthetic performance in the diatom Chaetoceros gracilis. Photosynthesis Research, 2020, 146, 189-195.	2.9	15
44	Ultrafast Excitation Energy Dynamics in a Diatom Photosystem I-Antenna Complex: A Femtosecond Fluorescence Upconversion Study. Journal of Physical Chemistry B, 2019, 123, 2673-2678.	2.6	14
45	Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. ELife, 2022, 11, .	6.0	14
46	Lightâ€independent biosynthesis and assembly of the photosystem II complex in the diatom <i>Chaetoceros gracilis</i> . FEBS Letters, 2013, 587, 1340-1345.	2.8	13
47	Spectral Properties and Excitation Relaxation of Novel Fucoxanthin Chlorophyll <i>a</i> /i>/ <i>cc/i>-Binding Protein Complexes. Journal of Physical Chemistry Letters, 2019, 10, 5148-5152.</i>	4.6	13
48	pH-Sensing Machinery of Excitation Energy Transfer in Diatom PSI–FCPI Complexes. Journal of Physical Chemistry Letters, 2019, 10, 3531-3535.	4.6	12
49	pH-Induced Regulation of Excitation Energy Transfer in the Cyanobacterial Photosystem I Tetramer. Journal of Physical Chemistry B, 2020, 124, 1949-1954.	2.6	12
50	Molecular phylogeny of fucoxanthinâ€chlorophyll <i>a</i> / <i></i> / <i></i> proteins from <i>Chaetoceros gracilis</i> and Lhcq/Lhcf diversity. Physiologia Plantarum, 2022, 174, e13598.	5. 2	12
51	Luminescence of singlet oxygen in photosystem II complexes isolated from cyanobacterium Synechocystis sp. PCC6803 containing monovinyl or divinyl chlorophyll a. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1299-1305.	1.0	11
52	Does the water-oxidizing Mn4CaO5 cluster regulate the redox potential of the primary quinone electron acceptor QA in photosystem II? A study by Fourier transform infrared spectroelectrochemistry. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148082.	1.0	11
53	Acidic pH-Induced Modification of Energy Transfer in Diatom Fucoxanthin Chlorophyll <i>a</i> /ci>c-Binding Proteins. Journal of Physical Chemistry B, 2020, 124, 4919-4923.	2.6	11
54	Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa. Nature Communications, 2022, 13, 1679.	12.8	11

#	Article	IF	Citations
55	Aromatic structure of Tyrosineâ€92 in the extrinsic PsbU protein of red algal Photosystem II is important for its functioning. FEBS Letters, 2007, 581, 5255-5258.	2.8	10
56	Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. Photosynthesis Research, 2016, 130, 83-91.	2.9	10
57	Fourier transform infrared and mass spectrometry analyses of a site-directed mutant of D1-Asp170 as a ligand to the water-oxidizing Mn4CaO5 cluster in photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148086.	1.0	10
58	Enhancement of excitation-energy quenching in fucoxanthin chlorophyll a/c-binding proteins isolated from a diatom Phaeodactylum tricornutum upon excess-light illumination. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148350.	1.0	10
59	Structural implications for a phycobilisome complex from the thermophilic cyanobacterium Thermosynechococcus vulcanus. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148458.	1.0	10
60	The PsbQ' protein affects the redox potential of the Q _A in photosystem II. Photosynthetica, 2018, 56, 185-191.	1.7	9
61	Fluorescence property of photosystem II protein complexes bound to a gold nanoparticle. Faraday Discussions, 2017, 198, 121-134.	3. 2	8
62	Redox-state dependent blinking of single photosystem I trimers at around liquid-nitrogen temperature. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 30-40.	1.0	8
63	Adaptation of light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis to different light qualities. Photosynthesis Research, 2020, 146, 87-93.	2.9	8
64	Molecular organizations and function of iron-stress-induced-A protein family in Anabaena sp. PCC 7120. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148327.	1.0	8
65	Electrostatic interaction of positive charges on the surface of Psb31 with photosystem II in the diatom Chaetoceros gracilis. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 779-785.	1.0	7
66	Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies. Photosynthesis Research, 2020, 146, 143-150.	2.9	7
67	Functional role of Lys residues of Psb31 in electrostatic interactions with diatom photosystem <scp>ll</scp> . FEBS Letters, 2017, 591, 3259-3264.	2.8	4
68	Evolution and Function of the Extrinsic Subunits of Photosystem II. Advances in Photosynthesis and Respiration, 2021, , 429-446.	1.0	4
69	High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. Photosynthesis Research, 2021, 149, 303-311.	2.9	4
70	Evaluation of photosynthetic activities in thylakoid membranes by means of Fourier transform infrared spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 129-136.	1.0	3
71	pH-Dependent Regulation of Electron Flow in Photosystem II by a Histidine Residue at the Stromal Surface. Biochemistry, 2022, 61, 1351-1362.	2.5	3
72	Lysyl oxidaseâ€ike protein secreted from an acidophilic red alga, <i>Cyanidium caldarium</i> . Plant Direct, 2018, 2, e00084.	1.9	1

#	Article	IF	CITATIONS
73	Basic pH-induced modification of excitation-energy dynamics in fucoxanthin chlorophyll a/c-binding proteins isolated from a pinguiophyte, Glossomastix chrysoplasta. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148306.	1.0	1
74	Excitation-energy transfer in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120 as studied by time-resolved fluorescence spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148509.	1.0	1
75	2P289 1A1325 Spectroelectrochemical investigation of redox potential of the primary quinone electron acceptor QA in photosystem II for various species(The 48th Annual Meeting of the) Tj ETQq1 1 0.78431	.4 ngsBT/0	Overbock 10 T
76	Metal and Serine Proteases in the Crude Photosystem II Particles from a Diatom, Chaetoceros Gracilis. Advanced Topics in Science and Technology in China, 2013, , 83-85.	0.1	0
77	Reply to "Comment on  Acidic pH-Induced Modification of Energy Transfer in Diatom Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> /Binding Proteins'― Journal of Physical Chemistry B, 2020, 124, 10588-10589.	2.6	O