Susana Minguet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1538466/publications.pdf

Version: 2024-02-01

53 3,010 28
papers citations h-index

58 58 5232 all docs docs citations times ranked citing authors

168389

53

g-index

#	Article	IF	CITATIONS
1	Inborn errors of immunity and immunodeficiencies: Antibodyâ€mediated pathology and autoimmunity as a consequence of impaired immune reactions. European Journal of Immunology, 2022, 52, 1396-1405.	2.9	1
2	NLRC5 promotes transcription of BTN3A1-3 genes and VÎ ³ 9VÎ ² TÂcell-mediated killing. IScience, 2021, 24, 101900.	4.1	14
3	Low Pre-Transplant Caveolin-1 Serum Concentrations Are Associated with Acute Cellular Tubulointerstitial Rejection in Kidney Transplantation. Molecules, 2021, 26, 2648.	3.8	1
4	Cooperative Interaction of Nck and Lck Orchestrates Optimal TCR Signaling. Cells, 2021, 10, 834.	4.1	4
5	Anesthesia triggers drug delivery to experimental glioma in mice by hijacking caveolar transport. Neuro-Oncology Advances, 2021, 3, vdab140.	0.7	10
6	Actin polymerization regulates recruitment of Nck to CD3 <i>Îμ</i> upon Tâ€cell receptor triggering. Immunology, 2020, 159, 298-308.	4.4	6
7	Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nature Immunology, 2020, 21, 902-913.	14.5	68
8	Tyrosine 192 within the SH2 domain of the Src-protein tyrosine kinase p56Lck regulates T-cell activation independently of Lck/CD45 interactions. Cell Communication and Signaling, 2020, 18, 183.	6.5	12
9	Caveolin-1, tetraspanin CD81 and flotillins in lymphocyte cell membrane organization, signaling and immunopathology. Biochemical Society Transactions, 2020, 48, 2387-2397.	3.4	6
10	The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunological Reviews, 2019, 291, 8-25.	6.0	50
11	Phytochromeâ∈Based Extracellular Matrix with Reversibly Tunable Mechanical Properties. Advanced Materials, 2019, 31, e1806727.	21.0	104
12	Proximal <i>Lck</i> Promoter–Driven <i>Cre</i> Function Is Limited in Neonatal and Ineffective in Adult γδT Cell Development. Journal of Immunology, 2019, 203, 569-579.	0.8	19
13	Biomaterials: Phytochromeâ€Based Extracellular Matrix with Reversibly Tunable Mechanical Properties (Adv. Mater. 12/2019). Advanced Materials, 2019, 31, 1970083.	21.0	1
14	Oncogenic JAK2 $<$ sup $>$ V617F $<$ /sup $>$ causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Science Translational Medicine, 2018, 10, .	12.4	166
15	Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Scientific Reports, 2018, 8, 15024.	3.3	46
16	Caveolin-1: The Unnoticed Player in TCR and BCR Signaling. Advances in Immunology, 2018, 137, 83-133.	2.2	14
17	Anti-CD3 Fab Fragments Enhance Tumor Killing by Human $\hat{I}^{3\hat{I}'}$ T Cells Independent of Nck Recruitment to the $\hat{I}^{3\hat{I}'}$ T Cell Antigen Receptor. Frontiers in Immunology, 2018, 9, 1579.	4.8	19
18	The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex. Nature Immunology, 2017, 18, 911-920.	14.5	44

#	Article	IF	Citations
19	The Allostery Model of TCR Regulation. Journal of Immunology, 2017, 198, 47-52.	0.8	42
20	Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nature Immunology, 2017, 18, 1150-1159.	14.5	42
21	Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin- \hat{l}^21 expression. Oncotarget, 2017, 8, 42901-42916.	1.8	60
22	Regulatory T cells characterized by low Id3 expression are highly suppressive and accumulate during chronic infection. Oncotarget, 2017, 8, 102835-102851.	1.8	8
23	ld3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3. Cell Reports, 2016, 17, 2827-2836.	6.4	30
24	A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation. Immunity, 2016, 44, 1091-1101.	14.3	183
25	Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells. Blood, 2016, 127, 1930-1939.	1.4	44
26	Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. Journal of Immunology, 2016, 196, 448-458.	0.8	20
27	Caveolinâ€1 deficiency induces a <scp>MEK</scp> â€ <scp>ERK</scp> 1/2â€Snailâ€1â€dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Molecular Medicine, 2015, 7, 102-123.	6.9	79
28	Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation. Journal of Experimental Medicine, 2015, 212, 1693-1708.	8.5	18
29	Non-overlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. Cell Communication and Signaling, 2014, 12, 21.	6.5	31
30	The CD3 Conformational Change in the $\hat{I}^3\hat{I}'$ T Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Reports, 2014, 7, 1704-1715.	6.4	47
31	Activation of the TCR Complex by Peptide-MHC and Superantigens. Exs, 2014, 104, 9-23.	1.4	5
32	Caveolin-1 Is Required For T Cell-Mediated Acute GvHD. Blood, 2013, 122, 4461-4461.	1.4	0
33	Biomechanical Remodeling of the Microenvironment by Stromal Caveolin-1 Favors Tumor Invasion and Metastasis. Cell, 2011, 146, 148-163.	28.9	603
34	A New Vampire Saga: The Molecular Mechanism of T Cell Trogocytosis. Immunity, 2011, 35, 151-153.	14.3	37
35	Low-valency, but not monovalent, antigens trigger the B-cell antigen receptor (BCR). International Immunology, 2010, 22, 205-212.	4.0	51
36	The short length of the extracellular domain of $\hat{\mathbf{I}}$ is crucial for T cell antigen receptor function. Immunology Letters, 2008, 116, 195-202.	2.5	14

#	Article	IF	Citations
37	The extracellular part of \hat{I}^{\P} is buried in the T cell antigen receptor complex. Immunology Letters, 2008, 116, 203-210.	2.5	12
38	Enhanced Bâ€cell activation mediated by TLR4 and BCR crosstalk. European Journal of Immunology, 2008, 38, 2475-2487.	2.9	67
39	A permissive geometry model for TCR–CD3 activation. Trends in Biochemical Sciences, 2008, 33, 51-57.	7.5	48
40	Permissive Geometry Model. Advances in Experimental Medicine and Biology, 2008, 640, 113-120.	1.6	9
41	Different composition of the human and the mouse $\hat{I}^3\hat{I}$ T cell receptor explains different phenotypes of CD3 \hat{I}^3 and CD3 \hat{I} immunodeficiencies. Journal of Experimental Medicine, 2007, 204, 2537-2544.	8.5	56
42	Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity, 2007, 26, 43-54.	14.3	229
43	Different composition of the human and the mouse γδT cell receptor explains different phenotypes of CD3γ and CD3δimmunodeficiencies. Journal of Experimental Medicine, 2007, 204, 3049-3049.	8.5	7
44	Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation. Cellular Signalling, 2007, 19, 384-392.	3.6	46
45	Association of protein kinase C-δ with the B cell antigen receptor complex. Cellular Signalling, 2007, 19, 715-722.	3.6	12
46	A native antibody-based mobility-shift technique (NAMOS-assay) to determine the stoichiometry of multiprotein complexes. Journal of Immunological Methods, 2007, 324, 74-83.	1.4	31
47	A conformation- and avidity-based proofreading mechanism for the TCR–CD3 complex. Trends in Immunology, 2006, 27, 176-182.	6.8	65
48	Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) for the Identification and Analysis of Multiprotein Complexes. Science Signaling, 2006, 2006, pl4-pl4.	3.6	115
49	Adenosine and cAMP are potent inhibitors of the NF-?B pathway downstream of immunoreceptors. European Journal of Immunology, 2005, 35, 31-41.	2.9	169
50	A population of c-Kitlow(CD45/TER119)– hepatic cell progenitors of 11-day postcoitus mouse embryo liver reconstitutes cell-depleted liver organoids. Journal of Clinical Investigation, 2003, 112, 1152-1163.	8.2	48
51	The first 3 days of B-cell development in the mouse embryo. Blood, 2002, 100, 4074-4081.	1.4	58
52	Role of zetaPKC in B-cell signaling and function. EMBO Journal, 2002, 21, 4049-4057.	7.8	122
53	Long-lived polyclonal B-cell lines derived from midgestation mouse embryo lymphohematopoietic progenitors reconstitute adult immunodeficient mice. Blood, 2001, 98, 1862-1871.	1.4	16