List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1538436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignin-containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier. Industrial Crops and Products, 2022, 175, 114287.	2.5	24
2	Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes. International Journal of Biological Macromolecules, 2022, 205, 220-230.	3.6	31
3	Electrospray Deposition of Cellulose Nanofibers on Paper: Overcoming the Limitations of Conventional Coating. Nanomaterials, 2022, 12, 79.	1.9	13
4	Approaching a Zero-Waste Strategy in Rapeseed (Brassica napus) Exploitation: Sustainably Approaching Bio-Based Polyethylene Composites. Sustainability, 2022, 14, 7942.	1.6	7
5	Stiffening Potential of Lignocellulosic Fibers in Fully Biobased Composites: The Case of Abaca Strands, Spruce TMP Fibers, Recycled Fibers from ONP, and Barley TMP Fibers. Polymers, 2021, 13, 619.	2.0	10
6	Comparative assessment of cellulose nanofibers and calcium alginate beads for continuous Cu(II) adsorption in packed columns: the influence of water and surface hydrophobicity. Cellulose, 2021, 28, 4327-4344.	2.4	12
7	Monitoring fibrillation in the mechanical production of lignocellulosic micro/nanofibers from bleached spruce thermomechanical pulp. International Journal of Biological Macromolecules, 2021, 178, 354-362.	3.6	16
8	Valorization of Date Palm Waste for Plastic Reinforcement: Macro and Micromechanics of Flexural Strength. Polymers, 2021, 13, 1751.	2.0	10
9	The Integral Utilization of Date Palm Waste to Produce Plastic Composites. Polymers, 2021, 13, 2335.	2.0	7
10	Cellulose nanofibrils reinforced PBAT/TPS blends: Mechanical and rheological properties. International Journal of Biological Macromolecules, 2021, 183, 267-275.	3.6	34
11	Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis. Nanomaterials, 2021, 11, 2077.	1.9	18
12	Correlation between rheological measurements and morphological features of lignocellulosic micro/nanofibers from different softwood sources. International Journal of Biological Macromolecules, 2021, 187, 789-799.	3.6	17
13	Chemical-free production of lignocellulosic micro- and nanofibers from high-yield pulps: Synergies, performance, and feasibility. Journal of Cleaner Production, 2021, 313, 127914.	4.6	22
14	Characterization of CaCO3 Filled Poly(lactic) Acid and Bio Polyethylene Materials for Building Applications. Polymers, 2021, 13, 3323.	2.0	6
15	Tuning morphology and structure of non-woody nanocellulose: Ranging between nanofibers and nanocrystals. Industrial Crops and Products, 2021, 171, 113877.	2.5	28
16	Effect of enzymatic treatment (endo-glucanases) of fiber and mechanical lignocellulose nanofibers addition on physical and mechanical properties of binderless high-density fiberboards made from wheat straw. Journal of Building Engineering, 2021, 44, 103392.	1.6	4
17	Biobased polyamide reinforced with natural fiber composites. , 2021, , 141-165.		2
18	Potentiometric back titration as a robust and simple method for specific surface area estimation of lignocellulosic fibers. Cellulose, 2021, 28, 10815-10825.	2.4	10

#	Article	IF	CITATIONS
19	Development of high-performance binderless fiberboards from wheat straw residue. Construction and Building Materials, 2020, 232, 117247.	3.2	24
20	Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications. International Journal of Biological Macromolecules, 2020, 145, 92-99.	3.6	116
21	Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 2020, 144, 112061.	2.5	135
22	Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. International Journal of Biological Macromolecules, 2020, 145, 1199-1207.	3.6	32
23	Impact Strength and Water Uptake Behavior of Bleached Kraft Softwood-Reinforced PLA Composites as Alternative to PP-Based Materials. Polymers, 2020, 12, 2144.	2.0	12
24	Study on the Macro and Micromechanics Tensile Strength Properties of Orange Tree Pruning Fiber as Sustainable Reinforcement on Bio-Polyethylene Compared to Oil-Derived Polymers and Its Composites. Polymers, 2020, 12, 2206.	2.0	12
25	Effect of nanofiber addition on the physical–mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose, 2020, 27, 10811-10823.	2.4	16
26	Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials. International Journal of Biological Macromolecules, 2020, 155, 81-90.	3.6	23
27	Oxidative treatments for cellulose nanofibers production: a comparative study between TEMPO-mediated and ammonium persulfate oxidation. Cellulose, 2020, 27, 10671-10688.	2.4	43
28	High-Yield Lignocellulosic Fibers from Date Palm Biomass as Reinforcement in Polypropylene Composites: Effect of Fiber Treatment on Composite Properties. Polymers, 2020, 12, 1423.	2.0	13
29	Valorization of Hemp Core Residues: Impact of NaOH Treatment on the Flexural Strength of PP Composites and Intrinsic Flexural Strength of Hemp Core Fibers. Biomolecules, 2020, 10, 823.	1.8	10
30	Research on the Strengthening Advantages on Using Cellulose Nanofibers as Polyvinyl Alcohol Reinforcement. Polymers, 2020, 12, 974.	2.0	20
31	Lignocellulosic nanofibers for the reinforcement of brown line paper in industrial water systems. Cellulose, 2020, 27, 10799-10809.	2.4	5
32	Recycling dyed cotton textile byproduct fibers as polypropylene reinforcement. Textile Reseach Journal, 2019, 89, 2113-2125.	1.1	31
33	Flexural Properties and Mean Intrinsic Flexural Strength of Old Newspaper Reinforced Polypropylene Composites. Polymers, 2019, 11, 1244.	2.0	12
34	Determination of Mean Intrinsic Flexural Strength and Coupling Factor of Natural Fiber Reinforcement in Polylactic Acid Biocomposites. Polymers, 2019, 11, 1736.	2.0	24
35	Modeling the Stiffness of Coupled and Uncoupled Recycled Cotton Fibers Reinforced Polypropylene Composites. Polymers, 2019, 11, 1725.	2.0	11
36	TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production. Nanomaterials, 2019, 9, 1271.	1.9	52

#	Article	IF	CITATIONS
37	On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers. Materials, 2019, 12, 1584.	1.3	6
38	Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosensors and Bioelectronics, 2019, 141, 111407.	5.3	53
39	Towards the development of highly transparent, flexible and water-resistant bio-based nanopapers: tailoring physico-mechanical properties. Cellulose, 2019, 26, 6917-6932.	2.4	12
40	Study on the Tensile Strength and Micromechanical Analysis of Alfa Fibers Reinforced High Density Polyethylene Composites. Fibers and Polymers, 2019, 20, 602-610.	1.1	20
41	Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of Cleaner Production, 2019, 226, 64-73.	4.6	52
42	Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands. Industrial Crops and Products, 2019, 132, 319-326.	2.5	40
43	Biobased Composites from Biobased-Polyethylene and Barley Thermomechanical Fibers: Micromechanics of Composites. Materials, 2019, 12, 4182.	1.3	27
44	Explorative Study on the Use of CurauÃ _i Reinforced Polypropylene Composites for the Automotive Industry. Materials, 2019, 12, 4185.	1.3	18
45	TEMPO-oxidized cellulose nanofibers as potential Cu(II) adsorbent for wastewater treatment. Cellulose, 2019, 26, 903-916.	2.4	45
46	Production of fiberboard from rice straw thermomechanical extrudates by thermopressing: influence of fiber morphology, water and lignin content. European Journal of Wood and Wood Products, 2019, 77, 15-32.	1.3	15
47	PROMOTE CHEMICAL ENGINEERING THROUGH THE PRODUCTION OF POLYURETHANE FOAMS. , 2019, , .		0
48	PROJECT OF DEMONSTRATIVE EXPERIENCE OF SUSTAINABLE PROCESSES WITH HYDROPHOBIC AEROGELS OF CELLULOSE NANOFIBERS. INTED Proceedings, 2019, , .	0.0	0
49	CHEMICAL ANALYSIS APPLIED TO THE INDUSTRY: A DEMONSTRATIVE EXPERIENCE TO PROMOTE THE INTEREST FOR CHEMICAL ENGINEERING. EDULEARN Proceedings, 2019, , .	0.0	0
50	PROMOTING SUSTAINABILITY AND ETHICS IN PRODUCT DEVELOPMENT IN CHEMICAL ENGINEERING COURSES. , 2019, , .		0
51	Macro and micro-mechanics behavior of stifness in alkaline treated hemp core fibres polypropylene-based composites. Composites Part B: Engineering, 2018, 144, 118-125.	5.9	40
52	Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, 2018, 25, 1339-1351.	2.4	25
53	The role of lignin on the mechanical performance of polylactic acid and jute composites. International Journal of Biological Macromolecules, 2018, 116, 299-304.	3.6	36
54	Macro and micromechanical preliminary assessment of the tensile strength of particulate rapeseed sawdust reinforced polypropylene copolymer biocomposites for its use as building material. Construction and Building Materials, 2018, 168, 422-430.	3.2	17

#	Article	IF	CITATIONS
55	Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 2018, 25, 269-280.	2.4	52
56	Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves. Journal of Cleaner Production, 2018, 172, 233-238.	4.6	17
57	Combined effect of sodium carboxymethyl cellulose, cellulose nanofibers and drainage aids in recycled paper production process. Carbohydrate Polymers, 2018, 183, 201-206.	5.1	18
58	Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries. Cellulose, 2018, 25, 357-366.	2.4	8
59	Towards a new generation of functional fiber-based packaging: cellulose nanofibers for improved barrier, mechanical and surface properties. Cellulose, 2018, 25, 683-695.	2.4	21
60	Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive. International Journal of Biological Macromolecules, 2018, 108, 927-935.	3.6	56
61	Polyelectrolyte complexes for assisting the application of lignocellulosic micro/nanofibers in papermaking. Cellulose, 2018, 25, 6083-6092.	2.4	12
62	PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydrate Polymers, 2018, 199, 51-57.	5.1	121
63	Towards More Sustainable Material Formulations: A Comparative Assessment of PA11-SGW Flexural Performance versus Oil-Based Composites. Polymers, 2018, 10, 440.	2.0	18
64	Bleached Kraft Eucalyptus Fibers as Reinforcement of Poly(Lactic Acid) for the Development of High-Performance Biocomposites. Polymers, 2018, 10, 699.	2.0	12
65	Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 2018, 10, 717.	2.0	19
66	CHEMICAL ENGINEERING PROMOTION USING A DEMONSTRATION PLANT OF DEODORANT STICK PRODUCTION. , 2018, , .		0
67	A MOBIL BIODIESEL PRODUCTION PLATFORM AS A METHODOLOGY TO SHOW CHEMICAL ENGINEERING TO BACHELORS STUDENTS. , 2018, , .		0
68	Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties. Carbohydrate Polymers, 2017, 163, 20-27.	5.1	64
69	The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: From residue to value-added products. Industrial Crops and Products, 2017, 99, 27-33.	2.5	48
70	Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production method. International Journal of Biological Macromolecules, 2017, 99, 29-36.	3.6	21
71	Comparison between two different pretreatment technologies of rice straw fibers prior to fiberboard manufacturing: Twin-screw extrusion and digestion plus defibration. Industrial Crops and Products, 2017, 107, 184-197.	2.5	23
72	Bio composite from bleached pine fibers reinforced polylactic acid as a replacement of glass fiber reinforced polypropylene, macro and micro-mechanics of the Young's modulus. Composites Part B: Engineering, 2017, 125, 203-210.	5.9	50

#	Article	IF	CITATIONS
73	Bleached kraft softwood fibers reinforced polylactic acid composites, tensile and flexural strengths. , 2017, , 73-90.		5
74	Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. International Journal of Biological Macromolecules, 2017, 105, 664-670.	3.6	19
75	Immobilization of antimicrobial peptides onto cellulose nanopaper. International Journal of Biological Macromolecules, 2017, 105, 741-748.	3.6	13
76	Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose, 2017, 24, 3943-3954.	2.4	63
77	Mechanical and micromechanical tensile strength of eucalyptus bleached fibers reinforced polyoxymethylene composites. Composites Part B: Engineering, 2017, 116, 333-339.	5.9	53
78	Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers. Cellulose, 2017, 24, 349-362.	2.4	49
79	Sugarcane Bagasse Reinforced Composites: Studies on the Young's Modulus and Macro and Micro-Mechanics. BioResources, 2017, 12, .	0.5	15
80	Effect of Sodium Hydroxide Treatments on the Tensile Strength and the Interphase Quality of Hemp Core Fiber-Reinforced Polypropylene Composites. Polymers, 2017, 9, 377.	2.0	29
81	Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost. Polymers, 2017, 9, 557.	2.0	76
82	Cellulose polymer composites (WPC). , 2017, , 115-139.		10
83	Nanofibrillated cellulose as an additive in papermaking process. , 2017, , 153-173.		6
84	Fiberboards Made from Corn Stalk Thermomechanical Pulp and Kraft Lignin as a Green Adhesive. BioResources, 2017, 12, .	0.5	37
85	Evaluation of Thermal and Thermomechanical Behaviour of Bio-Based Polyamide 11 Based Composites Reinforced with Lignocellulosic Fibres. Polymers, 2017, 9, 522.	2.0	26
86	High-Yield Pulp from Brassica napus to Manufacture Packaging Paper. BioResources, 2017, 12, .	0.5	9
87	Starch-Based Biopolymer Reinforced with High Yield Fibers from Sugarcane Bagasse as a Technical and Environmentally Friendly Alternative to High Density Polyethylene. BioResources, 2016, 11, .	0.5	13
88	Tensile Strength Assessment of Injection-Molded High Yield Sugarcane Bagasse-Reinforced Polypropylene. BioResources, 2016, 11, .	0.5	10
89	Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties. BioResources, 2016, 11, .	0.5	31
90	Towards a good interphase between bleached kraft softwood fibers and poly(lactic) acid. Composites Part B: Engineering, 2016, 99, 514-520.	5.9	54

#	Article	IF	CITATIONS
91	Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose, 2016, 23, 1997-2010.	2.4	41
92	Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Flexural characterisation, impact behaviour and water uptake properties. Composites Part B: Engineering, 2016, 97, 176-182.	5.9	24
93	Morphological analysis of pulps from orange tree trimmings and its relation to mechanical properties. Measurement: Journal of the International Measurement Confederation, 2016, 93, 319-326.	2.5	11
94	Stiffness of bio-based polyamide 11 reinforced with softwood stone ground-wood fibres as an alternative to polypropylene-glass fibre composites. European Polymer Journal, 2016, 84, 481-489.	2.6	35
95	Nanofibrillated cellulose as an additive in papermaking process: A review. Carbohydrate Polymers, 2016, 154, 151-166.	5.1	205
96	Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose, 2016, 23, 3077-3088.	2.4	36
97	The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose, 2016, 23, 1433-1445.	2.4	64
98	Polypropylene reinforced with semi-chemical fibres of Leucaena collinsii : Thermal properties. Composites Part B: Engineering, 2016, 94, 75-81.	5.9	8
99	The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Industrial Crops and Products, 2016, 86, 295-300.	2.5	101
100	Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydrate Polymers, 2016, 139, 99-105.	5.1	85
101	Semichemical fibres of Leucaena collinsii reinforced polypropylene: Macromechanical and micromechanical analysis. Composites Part B: Engineering, 2016, 91, 384-391.	5.9	44
102	Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Young's modulus analysis and fibre diameter effect on the stiffness. Composites Part B: Engineering, 2016, 92, 332-337.	5.9	44
103	Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose, 2016, 23, 837-852.	2.4	103
104	Papermaking potential of Citrus sinensis trimmings using organosolv pulping, chlorine-free bleaching and refining. Journal of Cleaner Production, 2016, 112, 980-986.	4.6	15
105	ENCOURAGING STUDENTS TO DEVELOP THEIR OWN PROJECT THROUGH THE INCREASE OF THE NUMBER OF PRACTICAL SESSIONS. , 2016, , .		0
106	Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 2015, 10, .	0.5	9
107	Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications. BioResources, 2015, 10, .	0.5	66
108	Aplicación de celulosa nanofibrilada, en masa y superficie, a la pulpa mecánica de muela de piedra: una sólida alternativa al tratamiento clásico de refinado. Maderas: Ciencia Y Tecnologia, 2015, , 0-0.	0.7	3

#	Article	IF	CITATIONS
109	Enzymatic Refining and Cellulose Nanofiber Addition in Papermaking Processes from Recycled and Deinked Slurries. BioResources, 2015, 10, .	0.5	16
110	Acoustic properties of agroforestry waste orange pruning fibers reinforced polypropylene composites as an alternative to laminated gypsum boards. Construction and Building Materials, 2015, 77, 124-129.	3.2	37
111	On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron, 2015, 72, 28-33.	1.1	72
112	All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Industrial Crops and Products, 2015, 76, 166-173.	2.5	64
113	Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics. Composites Part B: Engineering, 2015, 81, 98-106.	5.9	41
114	Are Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products?. Environmental Science & Technology, 2015, 49, 12206-12213.	4.6	61
115	Olive stones flour as reinforcement in polypropylene composites: A step forward in the valorization of the solid waste from the olive oil industry. Industrial Crops and Products, 2015, 72, 183-191.	2.5	63
116	Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose, 2015, 22, 789-802.	2.4	88
117	Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design, 2015, 65, 454-461.	5.1	68
118	Tensile Properties of Polypropylene Composites Reinforced with Mechanical, Thermomechanical, and Chemi-Thermomechanical Pulps from Orange Pruning. BioResources, 2015, 10, .	0.5	27
119	Thermoplasticized starch modified by reactive blending with epoxidized soybean oil. Industrial Crops and Products, 2014, 53, 261-267.	2.5	48
120	Macro and micromechanics analysis of short fiber composites stiffness: The case of old newspaper fibers–polypropylene composites. Materials & Design, 2014, 55, 319-324.	5.1	43
121	Study on the technical feasibility of replacing glass fibers by old newspaper recycled fibers as polypropylene reinforcement. Journal of Cleaner Production, 2014, 65, 489-496.	4.6	60
122	Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose, 2014, 21, 4247-4259.	2.4	65
123	Polyvinyl chloride composites filled with olive stone flour: Mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	23
124	From paper to nanopaper: evolution of mechanical and physical properties. Cellulose, 2014, 21, 2599-2609.	2.4	118
125	Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products, 2013, 41, 250-259.	2.5	189
126	Estimation of the interfacial shears strength, orientation factor and mean equivalent intrinsic tensile strength in old newspaper fiber/polypropylene composites. Composites Part B: Engineering, 2013, 50, 232-238.	5.9	66

#	Article	IF	CITATIONS
127	Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose, 2013, 20, 2863-2875.	2.4	142
128	Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose, 2013, 20, 1425-1435.	2.4	76
129	Modeling of the tensile moduli of mechanical, thermomechanical, and chemiâ€thermomechanical pulps from orange tree pruning. Polymer Composites, 2013, 34, 1840-1846.	2.3	37
130	Analysis of tensile and flexural modulus in hemp strands/polypropylene composites. Composites Part B: Engineering, 2013, 47, 339-343.	5.9	52
131	Newspaper fiber-reinforced thermoplastic starch biocomposites obtained by melt processing: Evaluation of the mechanical, thermal and water sorption properties. Industrial Crops and Products, 2013, 44, 300-305.	2.5	42
132	All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose, 2013, 20, 2909-2921.	2.4	57
133	Impact and flexural properties of stoneâ€ground wood pulpâ€reinforced polypropylene composites. Polymer Composites, 2013, 34, 842-848.	2.3	33
134	Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polymer Composites, 2013, 34, 1999-2007.	2.3	18
135	Thermoplastic Starch-based Composites Reinforced with Rape Fibers: Water Uptake and Thermomechanical Properties. BioResources, 2013, 8, .	0.5	16
136	Suitability of Rapeseed Chemithermomechanical Pulp as Raw Material in Papermaking. BioResources, 2013, 8, .	0.5	21
137	High-Performance-Tensile-Strength Alpha-Grass Reinforced Starch-Based Fully Biodegradable Composites. BioResources, 2013, 8, .	0.5	9
138	High Stiffness Performance Alpha-Grass Pulp Fiber Reinforced Thermoplastic Starch-Based Fully Biodegradable Composites. BioResources, 2013, 9, .	0.5	13
139	Micromechanics of Mechanical, Thermomechanical, and Chemi-Thermomechanical Pulp from Orange Tree Pruning as Polypropylene Reinforcement: A Comparative Study. BioResources, 2013, 8, .	0.5	37
140	Biocomposites from Starch-based Biopolymer and Rape Fibers. Part I: Interfacial Analysis and Intrinsic Properties of Rape Fibers. Current Organic Chemistry, 2013, 17, 1633-1640.	0.9	4
141	Biocomposites from Starch-based Biopolymer and Rape Fibers. Part II: Stiffening, Flexural and Impact Strength, and Product Development. Current Organic Chemistry, 2013, 17, 1641-1646.	0.9	5
142	Allocation of carbon dioxide emissions from key production steps in high-grade paper mills. Tappi Journal, 2013, 12, 19-28.	0.2	8
143	Micromechanics of hemp strands in polypropylene composites. Composites Science and Technology, 2012, 72, 1209-1213.	3.8	75
144	PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study. Composites Part B: Engineering, 2012, 43, 3453-3461.	5.9	53

#	Article	IF	CITATIONS
145	NANOFIBRILLATED CELLULOSE AS PAPER ADDITIVE IN EUCALYPTUS PULPS. BioResources, 2012, 7, .	0.5	155
146	ACOUSTIC PROPERTIES OF POLYPROPYLENE COMPOSITES REINFORCED WITH STONE GROUNDWOOD. BioResources, 2012, 7, .	0.5	58
147	MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES. BioResources, 2012, 7, .	0.5	36
148	RESEARCH ON THE SUITABILITY OF ORGANOSOLV SEMI-CHEMICAL TRITICALE FIBERS AS REINFORCEMENT FOR RECYCLED HDPE COMPOSITES. BioResources, 2012, 7, .	0.5	8
149	Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Composites Science and Technology, 2012, 72, 858-863.	3.8	155
150	Use of cellulose fibers from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Industrial Crops and Products, 2012, 39, 89-96.	2.5	71
151	Processing and properties of biodegradable composites based on Mater-Bi® and hemp core fibres. Resources, Conservation and Recycling, 2012, 59, 38-42.	5.3	36
152	STONE-GROUND WOOD PULP-REINFORCED POLYPROPYLENE COMPOSITES: WATER UPTAKE AND THERMAL PROPERTIES. BioResources, 2012, 7, .	0.5	11
153	BIO-BASED COMPOSITES FROM STONE GROUNDWOOD APPLIED TO NEW PRODUCT DEVELOPMENT. BioResources, 2012, 7, .	0.5	17
154	Upgrading of hemp core for papermaking purposes by means of organosolv process. Industrial Crops and Products, 2011, 34, 865-872.	2.5	43
155	Allocation of GHG emissions in combined heat and power systems: a new proposal for considering inefficiencies of the system. Journal of Cleaner Production, 2011, 19, 1072-1079.	4.6	26
156	Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal, 2011, 166, 1170-1178.	6.6	95
157	Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Composites Science and Technology, 2011, 71, 122-128.	3.8	70
158	Preparation and properties of starch-based biopolymers modified with difunctional isocyanates. BioResources, 2011, 6, 81-102.	0.5	8
159	Recycling of Paper Mill Sludge as Filler/Reinforcement in Polypropylene Composites. Journal of Polymers and the Environment, 2010, 18, 407-412.	2.4	20
160	Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties. Bioresource Technology, 2010, 101, 387-395.	4.8	124
161	Initiating ECF bleaching sequences of eucalyptus kraft pulps with Z/D and Z/E stages. Holzforschung, 2010, 64, .	0.9	7
162	Low environmental impact bleaching sequences for attaining high brightness level with eucalyptus SPP pulp. Brazilian Journal of Chemical Engineering, 2009, 26, 11-22.	0.7	1

#	Article	IF	CITATIONS
163	Preparation and properties of biocomposites based on jute fibers and blend of plasticized starch and poly(βâ€hydroxybutyrate). Journal of Applied Polymer Science, 2009, 114, 313-321.	1.3	10
164	Biocomposites based on <i>Alfa</i> fibers and starchâ€based biopolymer. Polymers for Advanced Technologies, 2009, 20, 1068-1075.	1.6	68
165	Behavior of biocomposite materials from flax strands and starch-based biopolymer. Chemical Engineering Science, 2009, 64, 2651-2658.	1.9	61
166	Recovered and recycled Kraft fibers as reinforcement of PP composites. Chemical Engineering Journal, 2008, 138, 586-595.	6.6	30
167	Soda-Treated Sisal/Polypropylene Composites. Journal of Polymers and the Environment, 2008, 16, 35-39.	2.4	41
168	Blocked diisocyanates as reactive coupling agents: Application to pine fiber–polypropylene composites. Carbohydrate Polymers, 2008, 74, 106-113.	5.1	52
169	An Empirical Mathematical Model for the Predictive Analysis of the Chemical Absorption of Hydroxide in <i>Eucalyptus</i> Wood. Industrial & Engineering Chemistry Research, 2008, 47, 3856-3860.	1.8	1
170	Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Composites Part A: Applied Science and Manufacturing, 2007, 38, 369-377.	3.8	89
171	Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. Journal of Applied Polymer Science, 2007, 103, 3706-3717.	1.3	77
172	Evaluation of the reinforcing effect of ground wood pulp in the preparation of polypropylene-based composites coupled with maleic anhydride grafted polypropylene. Journal of Applied Polymer Science, 2007, 105, 3588-3596.	1.3	61
173	Blocked isocyanates as coupling agents for cellulose-based composites. Carbohydrate Polymers, 2007, 68, 537-543.	5.1	73
174	Predicting flotation efficiency using neural networks. Chemical Engineering and Processing: Process Intensification, 2007, 46, 314-322.	1.8	35
175	Chemical modification of jute fibers for the production of green-composites. Journal of Hazardous Materials, 2007, 144, 730-735.	6.5	197
176	Composite materials derived from biodegradable starch polymer and jute strands. Process Biochemistry, 2007, 42, 329-334.	1.8	142
177	Comparison of cationic demand between olive wood organosolv pulp and eucaliptus kraft pulp. Process Biochemistry, 2006, 41, 1602-1607.	1.8	16
178	Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. Journal of Applied Polymer Science, 2006, 102, 833-840.	1.3	98
179	Hemp Strands: PP Composites by Injection Molding: Effect of Low Cost Physico-chemical Treatments. Journal of Reinforced Plastics and Composites, 2006, 25, 313-327.	1.6	37
180	A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood. Bioresource Technology, 2005, 96, 1125-1129.	4.8	28

#	Article	IF	CITATIONS
181	Chemical treatment for improving wettability of biofibres into thermoplastic matrices. Composite Interfaces, 2005, 12, 725-738.	1.3	15
182	Study of Filler Flocculation Mechanisms and Floc Properties Induced by Polyethylenimine. Industrial & Engineering Chemistry Research, 2005, 44, 5616-5621.	1.8	21
183	Hemp Strands as Reinforcement of Polystyrene Composites. Chemical Engineering Research and Design, 2004, 82, 1425-1431.	2.7	37
184	Enzymic deinking of old newspapers with cellulase. Process Biochemistry, 2003, 38, 1063-1067.	1.8	41
185	Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique. Wood Science and Technology, 1996, 30, 227.	1.4	47
186	Correlation between the cellulose fibres beating and the fixation of a soluble cationic polymer. British Polymer Journal, 1984, 16, 83-86.	0.7	33