Xiufeng Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1538311/publications.pdf Version: 2024-02-01

XILLEENC ZHONC

#	Article	IF	CITATIONS
1	Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications, 2014, 5, 4047.	12.8	772
2	Tankyrase inhibition promotes a stable human naÃ⁻ve pluripotent state with improved functionality. Development (Cambridge), 2016, 143, 4368-4380.	2.5	64
3	Identification of tumorigenic retinal stem-like cells in human solid retinoblastomas. International Journal of Cancer, 2007, 121, 2125-2131.	5.1	57
4	HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold. Acta Biomaterialia, 2017, 54, 117-127.	8.3	52
5	Generation of Retinal Organoids with Mature Rods and Cones from Urine-Derived Human Induced Pluripotent Stem Cells. Stem Cells International, 2018, 2018, 1-12.	2.5	42
6	Vascular endothelial growth factor-B gene transfer exacerbates retinal and choroidal neovascularization and vasopermeability without promoting inflammation. Molecular Vision, 2011, 17, 492-507.	1.1	32
7	An Optimized System for Effective Derivation of Three-Dimensional Retinal Tissue via Wnt Signaling Regulation. Stem Cells, 2018, 36, 1709-1722.	3.2	31
8	Generation and Characterization of Induced Pluripotent Stem Cells and Retinal Organoids From a Leber's Congenital Amaurosis Patient With Novel RPE65 Mutations. Frontiers in Molecular Neuroscience, 2019, 12, 212.	2.9	30
9	Self-Formation of RPE Spheroids Facilitates Enrichment and Expansion of hiPSC-Derived RPE Generated on Retinal Organoid Induction Platform. , 2018, 59, 5659.		28
10	Derivation and Identification of Motor Neurons from Human Urine-Derived Induced Pluripotent Stem Cells. Stem Cells International, 2018, 2018, 1-9.	2.5	22
11	Human retinal organoids release extracellular vesicles that regulate gene expression in target human retinal progenitor cells. Scientific Reports, 2021, 11, 21128.	3.3	18
12	Islet1 and Brn3 Expression Pattern Study in Human Retina and hiPSC-Derived Retinal Organoid. Stem Cells International, 2019, 2019, 1-14.	2.5	14
13	p16INK4a expression in retinoblastoma: a marker of differentiation grade. Diagnostic Pathology, 2014, 9, 180.	2.0	12
14	Spatial and Temporal Development of Müller Glial Cells in hiPSC-Derived Retinal Organoids Facilitates the Cell Enrichment and Transcriptome Analysis. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	6
15	A unique telomere DNA expansion phenotype in human retinal rod photoreceptors associated with aging and disease. Brain Pathology, 2019, 29, 45-52.	4.1	5
16	Retinal Organoid Induction System for Derivation of 3D Retinal Tissues from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2021, , .	0.3	5
17	Establishment of a Rapid Lesion-Controllable Retinal Degeneration Monkey Model for Preclinical Stem Cell Therapy. Cells, 2020, 9, 2468.	4.1	4
18	Generation of an acute retinal photoreceptor degeneration model in rabbits. American Journal of Translational Research (discontinued), 2018, 10, 235-245.	0.0	4

XIUFENG ZHONG

#	Article	IF	CITATIONS
19	Generation of an iPSC line (SKLOi001-A) from a patient with CLCN2-related leukoencephalopathy. Stem Cell Research, 2020, 45, 101769.	0.7	3
20	Generation of an RCVRN-eGFP Reporter hiPSC Line by CRISPR/Cas9 to Monitor Photoreceptor Cell Development and Facilitate the Cell Enrichment for Transplantation. Frontiers in Cell and Developmental Biology, 2022, 10, 870441.	3.7	3
21	Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Annals of Neurosciences, 2011, 18, 64-5.	1.7	2
22	A novel mutation of WFS1 gene in a Chinese patient with Wolfram syndrome: a case report. BMC Pediatrics, 2018, 18, 116.	1.7	2