Peer Löbmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1538126/publications.pdf Version: 2024-02-01

DEED LÃORMANN

#	Article	IF	CITATIONS
1	Antireflective coatings prepared by sol–gel processing: Principles and applications. Journal of the European Ceramic Society, 2012, 32, 2995-2999.	5.7	92
2	Preparation of CuAlO2 and CuCrO2 thin films by sol–gel processing. Thin Solid Films, 2009, 518, 1153-1156.	1.8	77
3	New Rollâ€ŧoâ€Roll Processable PEDOTâ€Based Polymer with Colorless Bleached State for Flexible Electrochromic Devices. Advanced Functional Materials, 2020, 30, 1906254.	14.9	68
4	MgF2 antireflective coatings by sol–gel processing: film preparation and thermal densification. Journal of Materials Chemistry, 2012, 22, 18535.	6.7	60
5	Crack formation in TiO2 films prepared by sol–gel processing: Quantification and characterization. Thin Solid Films, 2007, 515, 5212-5219.	1.8	57
6	Structural and physical effects of Mg-doping on p-type CuCrO2 and CuAl0.5Cr0.5O2 thin films. Journal of Materials Chemistry, 2010, 20, 6562.	6.7	54
7	Preparation of p-type conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol–gel processing. Journal of Sol-Gel Science and Technology, 2009, 52, 113-119.	2.4	51
8	Anti-soiling surfaces for PV applications prepared by sol-gel processing: Comparison of laboratory testing and outdoor exposure. Solar Energy Materials and Solar Cells, 2016, 157, 422-428.	6.2	44
9	Liquid phase deposition of TiO2 on glass: Systematic comparison to films prepared by sol–gel processing. Thin Solid Films, 2007, 515, 8072-8077.	1.8	43
10	Densification and Microstructural Evolution of TiO2Films Prepared by Solâ^'Gel Processing. Chemistry of Materials, 2006, 18, 4478-4485.	6.7	39
11	Anti-soiling effect of porous SiO2 coatings prepared by sol–gel processing. Journal of Sol-Gel Science and Technology, 2011, 59, 239-244.	2.4	38
12	Growth mechanism of Nb-doped TiO2 sol–gel multilayer films characterized by SEM and focus/defocus TEM. Journal of Sol-Gel Science and Technology, 2010, 53, 148-153.	2.4	33
13	Microstructure of sol–gel derived TiO2 thin films characterized by atmospheric ellipsometric porosimetry. Thin Solid Films, 2009, 517, 1596-1600.	1.8	30
14	Largeâ€Area Electrochromic Devices on Flexible Polymer Substrates with High Optical Contrast and Enhanced Cycling Stability. Advanced Materials Technologies, 2021, 6, 2000836.	5.8	30
15	Modified procedure for the sol–gel processing of indium–tin oxide (ITO) films. Journal of Sol-Gel Science and Technology, 2008, 47, 68-73.	2.4	27
16	Avoiding Voltage-Induced Degradation in PET-ITO-Based Flexible Electrochromic Devices. ACS Applied Materials & Interfaces, 2020, 12, 36695-36705.	8.0	26
17	Porous MgF2 antireflective λ/4 films prepared by sol–gel processing: comparison of synthesis approaches. Journal of Sol-Gel Science and Technology, 2015, 76, 82-89.	2.4	24
18	Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications. Thin Solid Films, 2014, 562, 274-281.	1.8	23

Peer Löbmann

#	Article	IF	CITATIONS
19	Characterization of sol–gel thin films by ellipsometric porosimetry. Journal of Sol-Gel Science and Technology, 2017, 84, 2-15.	2.4	23
20	Densification and Crystallization of Lead Titanate Aerogels. Journal of the American Ceramic Society, 1997, 80, 2658-2666.	3.8	20
21	Structural Evolution in Sol–Gelâ€Đerived Yttrium Aluminum Garnet–Alumina Precursor Fibers. Journal of the American Ceramic Society, 2002, 85, 2827-2833.	3.8	18
22	Soluble Powders as Precursors for TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 2005, 33, 275-282.	2.4	18
23	Sol-Gel Processing of MgF2 Antireflective Coatings. Nanomaterials, 2018, 8, 295.	4.1	18
24	Influence of single layer thickness on the performance of undoped and Mg-doped CuCrO2 thin films by sol–gel processing. Journal of Sol-Gel Science and Technology, 2011, 57, 157-163.	2.4	17
25	Antireflective coatings by sol–gel processing: commercial products and future perspectives. Journal of Sol-Gel Science and Technology, 2017, 83, 291-295.	2.4	17
26	Hybrid polymer sol–gel material for UV-nanoimprint: microstructure and thermal densification. Journal of Sol-Gel Science and Technology, 2013, 66, 73-83.	2.4	15
27	Characterization of stacked sol–gel films: Comparison of results derived from scanning electron microscopy, UV–vis spectroscopy and ellipsometric porosimetry. Thin Solid Films, 2012, 520, 1880-1884.	1.8	14
28	Inorganic Thin Films Prepared from Soluble Powders and Their Applications. Journal of Sol-Gel Science and Technology, 2000, 19, 473-477.	2.4	13
29	TiO2 thin films on soda-lime and borosilicate glass prepared by sol–gel processing: influence of the substrates. Journal of Sol-Gel Science and Technology, 2011, 58, 400-406.	2.4	13
30	Lead Zirconate-Titanate Films Prepared from Soluble Powders. Journal of Sol-Gel Science and Technology, 1998, 13, 827-831.	2.4	12
31	Sol–gel preparation of TiO2 and MgF2 multilayers. Journal of Sol-Gel Science and Technology, 2013, 67, 436-441.	2.4	12
32	Formation, densification and properties of sol–gel TiO2 films prepared from triethanolamine-chelated soluble precursor powders. Journal of Sol-Gel Science and Technology, 2008, 45, 251-259.	2.4	10
33	Antireflective Coatings and Optical Filters. , 2013, , 707-724.		9
34	Microstructure and performance of AZO thin films prepared by sol–gel processing. Journal of Sol-Gel Science and Technology, 2013, 66, 120-125.	2.4	8
35	Solubility of porous MgF2 films in water: influence of glass substrates. Journal of Sol-Gel Science and Technology, 2017, 82, 40-44.	2.4	8
36	SiO2–TiO2 scattering layers prepared by sol–gel processing for light management in thin film solar cells. Journal of Sol-Gel Science and Technology, 2015, 74, 585-593.	2.4	6

Peer Löbmann

#	Article	IF	CITATIONS
37	Adjustable refractive index of titania–alumina thin films prepared from soluble precursor powders. Journal of Sol-Gel Science and Technology, 2016, 77, 69-77.	2.4	6
38	Hybrid polymer incorporating BN particles: Thermal, mechanical, and electrical properties. Journal of Sol-Gel Science and Technology, 2017, 83, 489-494.	2.4	6
39	Sol–gel derived scattering layers as substrates for thin-film photovoltaic cells. Thin Solid Films, 2014, 564, 201-205.	1.8	5
40	Transparent Conducting Oxides. , 2013, , 655-672.		5
41	Sol–gel matrix for YAG:Ce phosphors in pc-LEDs. Journal of Sol-Gel Science and Technology, 2021, 97, 458-465.	2.4	4
42	Electrochromic Polymer Ink Derived from a Sidechainâ€Modified EDOT for Electrochromic Devices with Colorless Bright State. ChemElectroChem, 2021, 8, 726-734.	3.4	4
43	BN—hybrid polymer composites: influence of particle surface functionalization. Journal of Sol-Gel Science and Technology, 2018, 86, 135-140.	2.4	3
44	Transparent conductive organic–inorganic hybrid composites based on Ag nanowires. Journal of Sol-Gel Science and Technology, 2020, 96, 121-129.	2.4	3
45	Atmospheric control of gel-oxide transformation in sol–gel derived Al2O3-Y2O3 fibers. Journal of Sol-Gel Science and Technology, 2010, 55, 9-14.	2.4	2
46	MgF2 films prepared from solvothermally treated precursor solutions. Journal of Sol-Gel Science and Technology, 2018, 85, 514-519.	2.4	2
47	Systematic Comparison of Thermal Annealing and Laser Treatment of TiO2 Thin Films Prepared by Sol-Gel Processing. Lasers in Manufacturing and Materials Processing, 2019, 6, 387-397.	2.2	2
48	Thermal Annealing and Laser Treatment of Sol-gel Derived Zirconia Thin Films. Lasers in Manufacturing and Materials Processing, 2020, 7, 234-243.	2.2	2
49	Inorganic-organic hybrid polymers for printing of optical components: from digital light processing to inkjet 3D-printing. Journal of Sol-Gel Science and Technology, 2022, 101, 649-654.	2.4	2
50	Mesoporous TiO2 thin films prepared from hydrothermally treated precursor powder sols. Journal of Sol-Gel Science and Technology, 2018, 87, 292-298.	2.4	0
51	Anti-soiling Effect of Porous SiO2 Coatings. , 2018, , 3253-3269.		0

52 Anti-soiling Effect of Porous SiO2 Coatings. , 2016, , 1-18.