Jordi PalacÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1537862/publications.pdf

Version: 2024-02-01

236925 175258 2,869 76 25 52 citations h-index g-index papers 79 79 79 2473 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors. Sensors, 2022, 22, 1120.	3.8	10
2	Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories. Applied Sciences (Switzerland), 2022, 12, 2606.	2.5	16
3	Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors Applied to Classify Two Volatiles. Chemosensors, 2022, 10 , 118 .	3.6	8
4	Enhancing the Sense of Attention from an Assistance Mobile Robot by Improving Eye-Gaze Contact from Its Iconic Face Displayed on a Flat Screen. Sensors, 2022, 22, 4282.	3.8	9
5	Overview of the Trajectories of an Omnidirectional Mobile Robot based on a Single Motion Command. , 2022, , .		1
6	Classification of Three Volatiles Using a Single-Type eNose with Detailed Class-Map Visualization. Sensors, 2022, 22, 5262.	3.8	4
7	Suboptimal Omnidirectional Wheel Design and Implementation. Sensors, 2021, 21, 865.	3.8	16
8	Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments. Sensors, 2021, 21, 4763.	3.8	11
9	Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant. Sensors, 2021, 21, 7216.	3.8	22
10	Implementation of a Compact Wearable Temperature, Pressure, Humidity and Gas Sensing Device. Advances in Intelligent Systems and Computing, 2020, , 825-830.	0.6	0
11	Mobile Robot Self-Localization with 2D Push-Broom LIDAR in a 2D Map. Sensors, 2020, 20, 2500.	3.8	24
12	Design and FDM/FFF Implementation of a Compact Omnidirectional Wheel for a Mobile Robot and Assessment of ABS and PLA Printing Materials. Robotics, 2020, 9, 43.	3.5	15
13	Extending the Application of an Assistant Personal Robot as a Walk-Helper Tool. Robotics, 2019, 8, 27.	3.5	21
14	Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection. Sensors, 2019, 19, 1957.	3.8	51
15	Optical Mouse Sensor for Eye Blink Detection and Pupil Tracking: Application in a Low-Cost Eye-Controlled Pointing Device. Journal of Sensors, 2019, 2019, 1-19.	1.1	10
16	Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System. Sensors, 2017, 17, 1122.	3.8	13
17	Automatic Supervision of Temperature, Humidity, and Luminance with an Assistant Personal Robot. Journal of Sensors, 2017, 2017, 1-7.	1.1	8
18	Chemical Source Localization Fusing Concentration Information in the Presence of Chemical Background Noise. Sensors, 2017, 17, 904.	3.8	9

#	Article	IF	CITATIONS
19	Preliminary Application of an Assistant Personal Robot as an Ambient Monitoring Tool. Advances in Intelligent Systems and Computing, 2017, , 25-31.	0.6	0
20	Experimental Characterization of the Twin-Eye Laser Mouse Sensor. Journal of Sensors, 2016, 2016, 1-8.	1.1	1
21	Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot. Sensors, 2016, 16, 610.	3.8	40
22	Design, Implementation and Validation of the Three-Wheel Holonomic Motion System of the Assistant Personal Robot (APR). Sensors, 2016, 16, 1658.	3.8	36
23	Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot. Journal of Sensors, 2016, 2016, 1-8.	1.1	409
24	A Proposal to Combine Depth Information from LIDAR and RGB-D Sensors in an Assistant Personal Robot. Advances in Intelligent Systems and Computing, 2016, , 359-361.	0.6	0
25	A Proposal of a Multi-agent System Implementation for the Control of an Assistant Personal Robot. Advances in Intelligent Systems and Computing, 2016, , 171-179.	0.6	1
26	Vineyard Yield Estimation Based on the Analysis of High Resolution Images Obtained with Artificial Illumination at Night. Sensors, 2015, 15, 8284-8301.	3.8	56
27	Collision Avoidance System with Deceleration Control Applied to an Assistant Personal Robot. Advances in Intelligent Systems and Computing, 2015, , 227-228.	0.6	1
28	Development of a High Mobility Assistant Personal Robot for Home Operation. Advances in Intelligent Systems and Computing, 2015, , 65-73.	0.6	4
29	A Proposal for Automatic Fruit Harvesting by Combining a Low Cost Stereovision Camera and a Robotic Arm. Sensors, 2014, 14, 11557-11579.	3.8	84
30	Ambient Intelligence Application Based on Environmental Measurements Performed with an Assistant Mobile Robot. Sensors, 2014, 14, 6045-6055.	3.8	20
31	Counting red grapes in vineyards by detecting specular spherical reflection peaks in RGB images obtained at night with artificial illumination. Computers and Electronics in Agriculture, 2014, 108, 105-111.	7.7	45
32	An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture, 2014, 102, 112-119.	7.7	18
33	A Combined Approach to the Problem of Opening a Door with an Assistant Mobile Robot. Lecture Notes in Computer Science, 2014, , 9-12.	1.3	1
34	Optimization of the virtual mouse HeadMouse to foster its classroom use by children with physical disabilities. Advances in Distributed Computing and Artificial Intelligence Journal, 2014, 2, 01-08.	1.5	5
35	A Mobile Robot Agent for Gas Leak Source Detection. Advances in Intelligent Systems and Computing, 2014, , 19-25.	0.6	7
36	Corridor Gas-Leak Localization Using a Mobile Robot with a Photo Ionization Detector Sensor. Sensor Letters, 2014, 12, 974-977.	0.4	1

#	Article	IF	Citations
37	Implementation of a robust absolute virtual head mouse combining face detection, template matching and optical flow algorithms. Telecommunication Systems, 2013, 52, 1479-1489.	2.5	15
38	Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agriculture, 2013, 14, 290-306.	6.0	103
39	Project-Based Learning Example: Controlling an Educational Robotic Arm With Computer Vision. Revista Iberoamericana De Tecnologias Del Aprendizaje, 2013, 8, 135-142.	0.9	25
40	Evaluation of the Color-Based Image Segmentation Capabilities of a Compact Mobile Robot Agent Based on Google Android Smartphone. Advances in Intelligent Systems and Computing, 2013, , 25-32.	0.6	1
41	Measuring Yarn Diameter Using Fast and Inexpensive Optical Sensors. International Journal of Sensors, Wireless Communications and Control, 2013, 2, 157-167.	0.7	0
42	An Embedded Real-Time Red Peach Detection System Based on an OV7670 Camera, ARM Cortex-M4 Processor and 3D Look-Up Tables. Sensors, 2012, 12, 14129-14143.	3.8	10
43	Definition of Linear Color Models in the RGB Vector Color Space to Detect Red Peaches in Orchard Images Taken under Natural Illumination. Sensors, 2012, 12, 7701-7718.	3.8	39
44	Two-Dimensional Radial Laser Scanning for Circular Marker Detection and External Mobile Robot Tracking. Sensors, 2012, 12, 16482-16497.	3.8	22
45	Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle. Sensors, 2011, 11, 11168-11187.	3.8	17
46	Innovative LIDAR 3D Dynamic Measurement System to Estimate Fruit-Tree Leaf Area. Sensors, 2011, 11, 5769-5791.	3.8	86
47	Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser as a Direct Illumination Source. Sensors, 2011, 11, 11856-11870.	3.8	11
48	Characterisation of the LMS200 Laser Beam under the Influence of Blockage Surfaces. Influence on 3D Scanning of Tree Orchards. Sensors, 2011, 11, 2751-2772.	3.8	44
49	Measuring Oscillating Walking Paths with a LIDAR. Sensors, 2011, 11, 5071-5086.	3.8	15
50	Development of a Virtual Humanoid Model Using the Denavit-Hartenberg Parameters as a Base for Visual Feedback Applications. Lecture Notes in Electrical Engineering, 2011, , 639-646.	0.4	0
51	Measuring yarn diameter using inexpensive optical sensors. Procedia Engineering, 2010, 5, 236-239.	1.2	14
52	Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder. Sensors and Actuators A: Physical, 2010, 157, 161-167.	4.1	51
53	Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario. Robotics and Autonomous Systems, 2010, 58, 37-45.	5.1	34
54	Bioinspired Electronic White Cane Implementation Based on a LIDAR, a Tri-Axial Accelerometer and a Tactile Belt. Sensors, 2010, 10, 11322-11339.	3.8	34

#	Article	IF	Citations
55	Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agricultural and Forest Meteorology, 2010, 150, 1420-1427.	4.8	57
56	Using the Optical Mouse Sensor as a Two-Euro Counterfeit Coin Detector. Sensors, 2009, 9, 7083-7096.	3.8	28
57	Measuring Gait Using a Ground Laser Range Sensor. Sensors, 2009, 9, 9133-9146.	3.8	57
58	The optical mouse sensor as an incremental rotary encoder. Sensors and Actuators A: Physical, 2009, 155, 73-81.	4.1	36
59	A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering, 2009, 102, 128-134.	4.3	158
60	Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology, 2009, 149, 1505-1515.	4.8	222
61	Simple and Robust Implementation of a Relative Virtual Mouse Controlled by Head Movements. , 2008, ,		7
62	Difficulties on Tree Volume Measurement from a Ground Laser Scanner. , 2008, , .		4
63	Real-Time Tree-Foliage Surface Estimation Using a Ground Laser Scanner. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 1377-1383.	4.7	61
64	The optical mouse for indoor mobile robot odometry measurement. Sensors and Actuators A: Physical, 2006, 126, 141-147.	4.1	98
65	Center-pivot automatization for agrochemical use. Computers and Electronics in Agriculture, 2005, 49, 419-430.	7.7	4
66	A methodology to extract dynamic compact thermal models under time-varying boundary conditions: application to a thermopile based IR sensor. Microsystem Technologies, 2005, 12, 21-29.	2.0	6
67	Dynamic compact thermal models with multiple power sources: application to an ultrathin chip stacking technology. IEEE Transactions on Advanced Packaging, 2005, 28, 694-703.	1.6	14
68	Evolutionary algorithms for compact thermal modelling of microsystems: application to a micro-pyrotechnic actuator. Journal of Micromechanics and Microengineering, 2004, 14, 1074-1082.	2.6	16
69	Building a Mobile Robot for a Floor-Cleaning Operation in Domestic Environments. IEEE Transactions on Instrumentation and Measurement, 2004, 53, 1418-1424.	4.7	73
70	Extraction of a Dynamic Multiport Compact Thermal Model for a Silicon Microthruster. Journal of Microelectronics and Electronic Packaging, 2004, 1, 30-38.	0.7	0
71	A 128×128 CMOS image sensor with analog memory for synchronous image capture. IEEE Sensors Journal, 2002, 2, 120-127.	4.7	16
72	Suboptimal filtering and nonlinear time scale transformation for the analysis of multiexponential decays. IEEE Transactions on Instrumentation and Measurement, 2001, 50, 135-140.	4.7	5

#	Article	IF	CITATION
73	Improved multiexponential transient spectroscopy by iterative deconvolution. IEEE Transactions on Instrumentation and Measurement, 2001, 50, 774-780.	4.7	13
74	A time-domain method for the analysis of thermal impedance response preserving the convolution form. IEEE Transactions on Components and Packaging Technologies, 1999, 22, 238-244.	1.3	31
75	Successive elimination algorithm for motion estimation. IEEE Transactions on Image Processing, 1995, 4, 105-107.	9.8	437
76	Measuring Coverage Performances of a Floor Cleaning Mobile Robot Using a Vision System. , 0, , .		24