
Wuping Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1537527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separation of trivalent rare earths from nitrate medium using solvent extraction with a novel extractant 2-ethylhexyl ((2-ethylhexylamino)methyl) phosphonic acid. Journal of Rare Earths, 2022, 40, 491-500.	4.8	7
2	Extraction and separation of yttrium from other rare earths in chloride medium by phosphorylcarboxylic acids. Journal of Rare Earths, 2022, 40, 958-964.	4.8	14
3	Removal of aluminum from chloride leach solutions of rare earths using 3-((bis(2-ethylhexyloxy))phosphoryl)-3-phenylpropanoic acid (PPPA). Hydrometallurgy, 2022, 208, 105825.	4.3	6
4	Acid/base regulated syntheses of different 1D coordination chains for selective mercury removal from aqueous solution. Journal of Solid State Chemistry, 2022, 308, 122908.	2.9	0
5	Separation of rare earths in chloride media by synergistic solvent extraction with mixture of HEHAMP and CA12 and stripping with HCl. Hydrometallurgy, 2022, 213, 105912.	4.3	6
6	Constructing p-sulfonatothiacalix[4]arene-based coordination squares as new type of efficient proton-conducting solid electrolytes. Inorganica Chimica Acta, 2021, 514, 120027.	2.4	3
7	4.8 nm Concave {M72} (M=Co, Ni, Fe) metal-organic polyhedra capped by 18 calixarenes. Science China Chemistry, 2021, 64, 426-431.	8.2	33
8	Eu–Mn Charge Transfer and the Strong Charge–Spin–Electronic Coupling Behavior in EuMnO ₃ . Inorganic Chemistry, 2021, 60, 1367-1379.	4.0	2
9	A porous 2D cobalt-sulfonylcalix[4]arene coordination polymer for gas adsorption. Journal of Molecular Structure, 2021, 1237, 130392.	3.6	7
10	Assembly of cobalt- <i>p</i> -sulfonatothiacalix[4]arene frameworks with phosphate, phosphite and phenylphosphonate ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 827-833.	0.7	0
11	Synergistic solvent extraction of heavy rare earths from chloride media using mixture of HEHHAP and Cyanex272. Hydrometallurgy, 2020, 191, 105240.	4.3	20
12	A novel extractant bis(2-ethylhexyl) ((2-ethylhexylamino)methyl) phosphine oxide for cerium(IV) extraction and separation from sulfate medium. Journal of Rare Earths, 2020, 38, 1330-1336.	4.8	13
13	Two sulfur and nitrogen-rich cobalt–thiacalix[4]arene compounds for the selective mercury removal from aqueous solutions. CrystEngComm, 2020, 22, 7668-7672.	2.6	5
14	Constructing [Coll6] hexagon-centered heterometallic {Ln ₆ Co ₆ } (Ln = Y, Eu) Tj ETQq0	0.0 rgBT . 6.0	Oyerlock 10
15	Anion-Directed Assembly of Nickel-Calixarene Complexes: Constructing Isolated {Ni ₈ }, {Ni ₂₀ }, {Ni ₂₄ }, and {Ni ₃₂ } Clusters. Crystal Growth and Design, 2020, 20, 4164-4168.	3.0	11
16	A calixarene-capped round-cake like {Fe24} coordination cage involving the shuttlecock-like Fe4-TC4A SBUs. Inorganic Chemistry Communication, 2020, 113, 107801.	3.9	1

17	Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230. Hydrometallurgy, 2020, 194, 105343.	4.3	45

18Progress in developing the novel extractants for rare earths. Scientia Sinica Chimica, 2020, 50,
1473-1485.0.44

#	Article	IF	CITATIONS
19	Separation of trivalent rare earths from chloride medium using solvent extraction with heptylaminomethyl phosphonic acid 2-ethylhexyl ester (HEHHAP). Hydrometallurgy, 2019, 188, 14-21.	4.3	23
20	Calixarene-Based {Co26} Burr Puzzle: An Efficient Oxygen Reduction Catalyst. ACS Applied Nano Materials, 2019, 2, 4232-4237.	5.0	14
21	Recovery of Ga(III) from chloride solutions by solvent extraction with Cextrant 230. Hydrometallurgy, 2019, 185, 76-81.	4.3	15
22	A Tb-calixarene coordination chain for luminescent sensing of Fe3+, Cr2O72â^' and 2,4-DNT. Polyhedron, 2019, 163, 84-90.	2.2	12
23	Synergistic extraction of heavy rare earths by mixture ofÂα-aminophosphonic acid HEHAMP and HEHEHP. Journal of Rare Earths, 2019, 37, 422-428.	4.8	22
24	Selective extraction and recovery of scandium from sulfate medium by Cextrant 230. Hydrometallurgy, 2018, 178, 54-59.	4.3	31
25	Solvent extraction and separation of rare earths from chloride media using α-aminophosphonic acid extractant HEHAMP. Solvent Extraction and Ion Exchange, 2018, 36, 136-149.	2.0	28
26	A metal-calixarene coordination nanotube with 5-(pyrimidin-5-yl)isophthalic acid. Dalton Transactions, 2018, 47, 1782-1785.	3.3	14
27	Calixarene-Based {Ni ₁₈ } Coordination Wheel: Highly Efficient Electrocatalyst for the Glucose Oxidation and Template for the Homogenous Cluster Fabrication. Journal of the American Chemical Society, 2018, 140, 6271-6277.	13.7	94
28	Assembly of Metal-Calixarene Compounds with a Ditetrazole Linker: From Isolated Cluster, Coordination Chain to Coordination Cage. Crystal Growth and Design, 2018, 18, 225-229.	3.0	12
29	A window frame-like square constructed by bridging Co 4 -(TC4A-SO 2) SBUs with 1,3-bis(2H-tertazol-5-yl)benzene. Journal of Molecular Structure, 2018, 1151, 29-33.	3.6	4
30	Extraction and separation of heavy rare earths from chloride medium by α-aminophosphonic acid HEHAPP. Journal of Rare Earths, 2018, 36, 304-310.	4.8	33
31	Organoamine-induced isomerism of calixarene-based complexes: from 1D to 2D. RSC Advances, 2018, 8, 39208-39213.	3.6	2
32	Selective extraction and recovery of copper from chloride solution using Cextrant 230. Hydrometallurgy, 2018, 181, 16-20.	4.3	23
33	Progress in the extraction and separation of rare earths and related metals with novel extractants: A review. Science China Technological Sciences, 2018, 61, 1319-1328.	4.0	33
34	Extraction and recovery of cerium(IV) and thorium(IV) from sulphate medium by an α-aminophosphonate extractant. Journal of Rare Earths, 2017, 35, 34-40.	4.8	46
35	Singleâ€Moleculeâ€Magnet Behavior in a Calix[8]arene apped {Tb ₆ ^{III} Cr ^{III} } Cluster. European Journal of Inorganic Chemistry, 2017, 2017, 2088-2093.	2.0	18
36	Selective Extraction and Separation of Ce (IV) and Th (IV) from RE(III) in Sulfate Medium using Di(2-ethylhexyl)- <i>N</i> -heptylaminomethylphosphonate. Solvent Extraction and Ion Exchange, 2017, 35, 117-129.	2.0	21

#	Article	IF	CITATIONS
37	Separation of zirconium from hafnium in sulfate medium using solvent extraction with a new reagent BEAP. Hydrometallurgy, 2017, 169, 607-611.	4.3	29
38	1D morning glory-like calixarene-based coordination polymers as a support for Au/Ag nanoparticles. Polyhedron, 2017, 130, 75-80.	2.2	8
39	Synergistic extraction and separation of rare earths from chloride medium by the mixture of HEHAPP and D2EHPA. Hydrometallurgy, 2017, 174, 78-83.	4.3	42
40	Single-Molecule Magnetic Behavior in a Calix[8]arene-Capped Heterometallic {DyIII 4 CoII 4 } Square-Antiprismatic Cluster. European Journal of Inorganic Chemistry, 2017, 2017, 4879-4883.	2.0	5
41	A Calixareneâ€based {Co ₉ } Coordination Triangle as an Efficient Heterogenous Catalyst. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 160-165.	1.2	8
42	Selective extraction and separation of Ce(IV) from thorium and trivalent rare earths in sulfate medium by an α-aminophosphonate extractant. Hydrometallurgy, 2017, 167, 107-114.	4.3	42
43	Ultrafine Pt Nanoclusters Confined in a Calixarene-Based {Ni ₂₄ } Coordination Cage for High-Efficient Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 16236-16239.	13.7	172
44	Selective extraction and separation of thorium from rare earths by a phosphorodiamidate extractant. Hydrometallurgy, 2016, 163, 192-197.	4.3	55
45	Calixarene-Based {Ni14} Seesaws: Active Chloride Anions to be Substituted by Isophthalic Acids. Crystal Growth and Design, 2016, 16, 6696-6699.	3.0	6
46	Extraction and separation of trivalent rare earth metal ions from nitrate medium by p-phosphonic acid calix[4]arene. Hydrometallurgy, 2016, 165, 300-305.	4.3	19
47	pH-dependent formation of different coordination cages based on Co ₄ -TC4A secondary building units and bridging ligands. CrystEngComm, 2016, 18, 4938-4943.	2.6	15
48	Discrete {Ni ₄₀ } Coordination Cage: A Calixarene-Based Johnson-Type (<i>J</i> ₁₇) Hexadecahedron. Journal of the American Chemical Society, 2016, 138, 2969-2972.	13.7	108
49	Progress in the Separation Processes for Rare Earth Resources. Fundamental Theories of Physics, 2015, 48, 287-376.	0.3	34
50	Structure modeling, synthesis and X-ray diffraction determination of an extra-large calixarene-based coordination cage and its application in drug delivery. Dalton Transactions, 2015, 44, 14394-14402.	3.3	37
51	Constructing calixarene-supported high nuclearity Co ₂₇ , Co ₂₈ and Ni ₁₈ Na ₆ clusters with triazoles as co-bridges. CrystEngComm, 2015, 17, 2896-2902.	2.6	21
52	Bridging cobalt–calixarene subunits into a Co8 entity or a chain with 4,4′-bipyridyl. Journal of Molecular Structure, 2014, 1060, 58-62.	3.6	8
53	Thiacalixarene-based nanoscale polyhedral coordination cages. Coordination Chemistry Reviews, 2014, 276, 61-72.	18.8	138
54	A 2D metal–calixarene aggregate involving in situ generated 5-(4-pyridyl)tetrazolate ligand. Inorganic Chemistry Communication, 2014, 47, 152-154.	3.9	9

#	Article	IF	CITATIONS
55	Extraction and Separation of Rare Earths from Nitrate Medium by Mixtures of <i>p</i> â€Phosphorylated Calixarene and 1â€Phenylâ€3â€methylâ€4â€benzoylâ€pyrazaloneâ€5. Chinese Journal of Chemistry, 2014, 32,	10 4 79-1082.	4
56	Two Elongated Octahedral Coordination Cages Constructed by M ₄ -TC4A Secondary Building Units (M = Co ^{II} and Fe ^{II}) and 2,2′-Bipyridine-4,4′-dicarboxylic Acids. Inorganic Chemistry, 2014, 53, 7083-7085.	4.0	36
57	A tetrahedral coordination cage based on p-tert-butylthiacalix[4]arene and 5-sulfoisophthalic acid. Inorganic Chemistry Communication, 2014, 41, 96-99.	3.9	14
58	A tetragonal prismatic {Co32} nanocage based on thiacalixarene. Chemical Communications, 2013, 49, 6785.	4.1	46
59	Preparation of high-purity thorium by solvent extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1651-1657.	1.5	30
60	Two 2D metal–calixarene aggregates incorporating pre-designed coordination nanocages. Chemical Communications, 2013, 49, 8211.	4.1	38
61	A metal–organic coordination nanotube based on Co4-TC4A subunits and V-shaped aromatic dicarboxylic acids. Journal of Molecular Structure, 2013, 1049, 310-314.	3.6	16
62	Kinetics of thorium extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate from nitric acid medium. Hydrometallurgy, 2013, 140, 66-70.	4.3	17
63	Synergistic extraction of Ce(IV) and Th(IV) with mixtures of Cyanex 923 and organophosphorus acids in sulfuric acid media. Separation and Purification Technology, 2013, 118, 487-491.	7.9	66
64	Extraction and separation of thorium and rare earths from nitrate medium with <i>p</i> â€phosphorylated calixarene. Journal of Chemical Technology and Biotechnology, 2013, 88, 1836-1840.	3.2	28
65	A zigzag ladder-like metal–organic aggregate based on Co4-TC4A subunits and aromatic tricarboxylic acids. Journal of Molecular Structure, 2013, 1038, 206-210.	3.6	12
66	Extraction and separation of thorium and rare earths with 5,11,17,23-tetra (diethoxyphosphoryl)-25,26,27,28-tetraacetoxycalix[4]arene. Journal of Rare Earths, 2012, 30, 1142-1145.	4.8	17
67	A giant coordination cage based on sulfonylcalix[4]arenes. Chemical Communications, 2012, 48, 9177.	4.1	62
68	Bridging calixarene-based {Co4} units into a square or belt with aromatic dicarboxylic acids. CrystEngComm, 2012, 14, 5727.	2.6	38
69	Calixarene-supported hexadysprosium cluster showing single molecule magnet behavior. Science China Chemistry, 2012, 55, 967-972.	8.2	24
70	Applications of the binary mixture of sec-octylphenoxyacetic acid and 8-hydroxyquinoline to the extraction of rare earth elements. Hydrometallurgy, 2012, 111-112, 109-113.	4.3	45
71	Calixareneâ€Based Nanoscale Coordination Cages. Angewandte Chemie - International Edition, 2012, 51, 1585-1588.	13.8	197
72	Syntheses, structures and magnetic properties of [Ln ^{III} ₆ Co ^{II} ₈] (Ln = Sm, Cd, Dy) clusters capped by <italic>p-tert</italic> -butylcalix[8]arenes. Scientia Sinica Chimica, 2012, 42, 1356-1363.	0.4	8

#	Article	IF	CITATIONS
73	p-tert-Butylthiacalix[4]arene-supported high-nuclearity {Co24M8} (M = Mo or W) nanospheres and the hybrids with Keggin polyoxometalates. Chemical Communications, 2011, 47, 4724.	4.1	69
74	A solvent extraction process with mixture of CA12 and Cyanex272 for the preparation of high purity yttrium oxide from rare earth ores. Separation and Purification Technology, 2011, 82, 197-201.	7.9	70
75	Synergistic extraction and separation study of rare earth elements from nitrate medium by mixtures of sec-nonylphenoxy acetic acid and 2,2′-bipyridyl. Journal of Chemical Technology and Biotechnology, 2011, 86, 719-723.	3.2	9
76	Cloud point extraction and separation of copper and lanthanoids using Triton X-100 with water-soluble p-sulfonatocalix[4]arene as a chelating agent. Mikrochimica Acta, 2010, 169, 297-301.	5.0	18
77	Extraction of rare earths using mixtures of sec-octylphenoxy acetic acid and organophosphorus acids. Korean Journal of Chemical Engineering, 2010, 27, 1258-1261.	2.7	12
78	Solvent extraction studies of Sm(III) from nitrate medium and separation factors of rare earth elements with mixtures of <i>sec</i> â€octylphenoxyacetic acid and 1,10â€phenthroline. Journal of Chemical Technology and Biotechnology, 2010, 85, 793-797.	3.2	13
79	Three <i>p</i> - <i>tert</i> -Butylthiacalix[4]arene-Supported Cobalt Compounds Obtained in One Pot Involving In Situ Formation of N ₆ H ₂ Ligand. Inorganic Chemistry, 2010, 49, 7735-7740.	4.0	54
80	Making a [Co24] metallamacrocycle from the shuttlecock-like tetranuclear cobalt-calixarene building blocks. Chemical Communications, 2010, 46, 6362.	4.1	79
81	Self-Assembly from Two-Dimensional Layered Networks to Tetranuclear Structures: Syntheses, Structures, and Properties of Four Copper-Thiacalix[4]arene Compounds. European Journal of Inorganic Chemistry, 2009, 2009, 4989-4994.	2.0	23
82	Extraction and separation of rare earths from chloride medium with mixtures of 2â€ethylhexylphosphonic acid monoâ€(2â€ethylhexyl) ester and <i>sec</i> â€nonylphenoxy acetic acid. Journal of Chemical Technology and Biotechnology, 2009, 84, 1798-1802.	3.2	28
83	Solvent extraction study of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid with Cyanex301 or Cyanex302. Hydrometallurgy, 2009, 100, 15-19.	4.3	46
84	Solvent extraction of rare earths from chloride medium with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and sec-octylphenoxyacetic acid. Separation and Purification Technology, 2009, 69, 97-101.	7.9	27
85	1,2,3,4-Alternate double cone conformational extreme in the supramolecular assemblies of p-sulfonatocalix[8]arene. CrystEngComm, 2009, 11, 1803.	2.6	18
86	A {Co ₃₂ } Nanosphere Supported by <i>ptert</i> -Butylthiacalix[4]arene. Journal of the American Chemical Society, 2009, 131, 11650-11651.	13.7	243
87	Assembly of â€ [~] discrete' (H2O)16 water clusters within a supramolecular compound of calixarene. CrystEngComm, 2009, 11, 1213.	2.6	34
88	Thiacalix[4]arene-Supported Planar Ln ₄ (Ln = Tb ^{III} , Dy ^{III}) Clusters: Toward Luminescent and Magnetic Bifunctional Materials. Inorganic Chemistry, 2009, 48, 11743-11747.	4.0	150
89	Two MnII2LnIII4 (Ln = Gd, Eu) hexanuclear compounds of p-tert-butylsulfinylcalix[4]arene. Dalton Transactions, 2009, , 2250.	3.3	48
90	Macroscopic single-crystal tubes assembled with porous supramolecular architecture of water-soluble calixarene and phenanthroline. Chemical Communications, 2009, , 1861.	4.1	19

#	Article	IF	CITATIONS
91	3D metal–organic frameworks incorporating water-soluble tetra-p-sulfonatocalix[4]arene. CrystEngComm, 2009, 11, 2282.	2.6	33
92	Physicochemical properties, surface active species and formation of reverse micelles in the Cyanex 923â€ <i>n</i> â€heptane/cerium(IV)â€H ₂ SO ₄ extraction system. Journal of Chemical Technology and Biotechnology, 2008, 83, 1056-1063.	3.2	3
93	Mass transfer kinetics of neodymium(III) extraction by calix[4]arene carboxylic acid using a constant interfacial area cell with laminar flow. Journal of Chemical Technology and Biotechnology, 2008, 83, 1314-1320.	3.2	18
94	Lanthanideâ€Hinged Calixarene Bicapsules: Discrete Hexanuclear Ln ^{III} /Phenanthroline/ <i>p</i> â€Sulfonatocalix[4]arene Oligomers (Ln = Gd, Tb). European Journal of Inorganic Chemistry, 2008, 2008, 2959-2962.	2.0	19
95	Synergistic extraction of rare earths using acid–base coupling extractants of calix[4]arene carboxyl derivative and primary amine N1923. Separation and Purification Technology, 2008, 62, 674-680.	7.9	46
96	A Unique Mn ₂ Gd ₂ Tetranuclear Compound of <i>p</i> - <i>tert</i> -Butylthiacalix[4]arene. Inorganic Chemistry, 2008, 47, 9733-9735.	4.0	41
97	Assembly of Supramolecular Compounds with Water-Soluble Calix[4]arenes. Crystal Growth and Design, 2008, 8, 3630-3635.	3.0	29
98	A Novel Europium Carbodiimide that Contains Isolated Europium Tetrahedra and Parallel Chains of Edge-Sharing Open Handbag-Like Eu6 Units. European Journal of Inorganic Chemistry, 2006, 2006, 4233-4236.	2.0	3
99	Synergistic extraction of lanthanum(III) from chloride medium by mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and triisobutylphosphine sulphide. Analytica Chimica Acta, 2003, 477, 251-256.	5.4	33
100	THREE-PHASE EXTRACTION STUDY OF CYANEX 923-n-HEPTANE/Ce4+-H2SO4SYSTEM. Solvent Extraction and Ion Exchange, 2002, 20, 251-262.	2.0	10
101	Kinetics of Cerium(IV) Extraction from H2SO4–HF Medium with Cyanex 923. Talanta, 2002, 56, 613-618.	5.5	56
102	Three-phase extraction study of cyanex 923–n-heptane/H2SO4 system. Talanta, 2002, 57, 1085-1092.	5.5	22
103	SOLVENT EXTRACTION OF CERIUM(IV) AND FLUORINE(I) FROM SULPHURIC ACID LEACHING OF BASTNASITE BY CYANEX 923. Solvent Extraction and Ion Exchange, 2001, 19, 243-259.	2.0	65