Wuping Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1537527/publications.pdf

Version: 2024-02-01

126907 161849 3,447 103 33 54 citations h-index g-index papers 104 104 104 2363 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A {Co ₃₂ } Nanosphere Supported by <i>p</i> - <i>tert</i> -Butylthiacalix[4]arene. Journal of the American Chemical Society, 2009, 131, 11650-11651.	13.7	243
2	Calixareneâ∈Based Nanoscale Coordination Cages. Angewandte Chemie - International Edition, 2012, 51, 1585-1588.	13.8	197
3	Ultrafine Pt Nanoclusters Confined in a Calixarene-Based {Ni ₂₄ } Coordination Cage for High-Efficient Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 16236-16239.	13.7	172
4	Thiacalix[4]arene-Supported Planar Ln ₄ (Ln = Tb ^{III} , Dy ^{III}) Clusters: Toward Luminescent and Magnetic Bifunctional Materials. Inorganic Chemistry, 2009, 48, 11743-11747.	4.0	150
5	Thiacalixarene-based nanoscale polyhedral coordination cages. Coordination Chemistry Reviews, 2014, 276, 61-72.	18.8	138
6	Discrete {Ni ₄₀ } Coordination Cage: A Calixarene-Based Johnson-Type (<i>J</i> ₁₇) Hexadecahedron. Journal of the American Chemical Society, 2016, 138, 2969-2972.	13.7	108
7	Calixarene-Based $\{Ni < sub > 18 < / sub > \}$ Coordination Wheel: Highly Efficient Electrocatalyst for the Glucose Oxidation and Template for the Homogenous Cluster Fabrication. Journal of the American Chemical Society, 2018, 140, 6271-6277.	13.7	94
8	Making a [Co24] metallamacrocycle from the shuttlecock-like tetranuclear cobalt-calixarene building blocks. Chemical Communications, 2010, 46, 6362.	4.1	79
9	A solvent extraction process with mixture of CA12 and Cyanex272 for the preparation of high purity yttrium oxide from rare earth ores. Separation and Purification Technology, 2011, 82, 197-201.	7.9	70
10	p-tert-Butylthiacalix [4] arene-supported high-nuclearity $\{Co24M8\}$ (M = Mo or W) nanospheres and the hybrids with Keggin polyoxometalates. Chemical Communications, 2011, 47, 4724.	4.1	69
11	Synergistic extraction of Ce(IV) and Th(IV) with mixtures of Cyanex 923 and organophosphorus acids in sulfuric acid media. Separation and Purification Technology, 2013, 118, 487-491.	7.9	66
12	SOLVENT EXTRACTION OF CERIUM(IV) AND FLUORINE(I) FROM SULPHURIC ACID LEACHING OF BASTNASITE BY CYANEX 923. Solvent Extraction and Ion Exchange, 2001, 19, 243-259.	2.0	65
13	A giant coordination cage based on sulfonylcalix[4]arenes. Chemical Communications, 2012, 48, 9177.	4.1	62
14	Kinetics of Cerium(IV) Extraction from H2SO4–HF Medium with Cyanex 923. Talanta, 2002, 56, 613-618.	5.5	56
15	Selective extraction and separation of thorium from rare earths by a phosphorodiamidate extractant. Hydrometallurgy, 2016, 163, 192-197.	4.3	55
16	Three <i>p</i> - <i>tert</i> -Butylthiacalix[4]arene-Supported Cobalt Compounds Obtained in One Pot Involving In Situ Formation of N ₆ H ₂ Ligand. Inorganic Chemistry, 2010, 49, 7735-7740.	4.0	54
17	Two MnII2LnIII4 (Ln = Gd, Eu) hexanuclear compounds of p-tert-butylsulfinylcalix[4]arene. Dalton Transactions, 2009, , 2250.	3.3	48
18	Synergistic extraction of rare earths using acid–base coupling extractants of calix[4]arene carboxyl derivative and primary amine N1923. Separation and Purification Technology, 2008, 62, 674-680.	7.9	46

#	Article	IF	Citations
19	Solvent extraction study of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid with Cyanex301 or Cyanex302. Hydrometallurgy, 2009, 100, 15-19.	4.3	46
20	A tetragonal prismatic $\{Co32\}$ nanocage based on thiacalixarene. Chemical Communications, 2013, 49, 6785.	4.1	46
21	Extraction and recovery of cerium(IV) and thorium(IV) from sulphate medium by an α-aminophosphonate extractant. Journal of Rare Earths, 2017, 35, 34-40.	4.8	46
22	Applications of the binary mixture of sec-octylphenoxyacetic acid and 8-hydroxyquinoline to the extraction of rare earth elements. Hydrometallurgy, 2012, 111-112, 109-113.	4.3	45
23	Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230. Hydrometallurgy, 2020, 194, 105343.	4.3	45
24	Synergistic extraction and separation of rare earths from chloride medium by the mixture of HEHAPP and D2EHPA. Hydrometallurgy, 2017, 174, 78-83.	4.3	42
25	Selective extraction and separation of Ce(IV) from thorium and trivalent rare earths in sulfate medium by an α-aminophosphonate extractant. Hydrometallurgy, 2017, 167, 107-114.	4.3	42
26	A Unique Mn ₂ Gd ₂ Tetranuclear Compound of <i>p</i> - <i>tert</i> -Butylthiacalix[4]arene. Inorganic Chemistry, 2008, 47, 9733-9735.	4.0	41
27	Bridging calixarene-based {Co4} units into a square or belt with aromatic dicarboxylic acids. CrystEngComm, 2012, 14, 5727.	2.6	38
28	Two 2D metal–calixarene aggregates incorporating pre-designed coordination nanocages. Chemical Communications, 2013, 49, 8211.	4.1	38
29	Structure modeling, synthesis and X-ray diffraction determination of an extra-large calixarene-based coordination cage and its application in drug delivery. Dalton Transactions, 2015, 44, 14394-14402.	3.3	37
30	Two Elongated Octahedral Coordination Cages Constructed by M ₄ -TC4A Secondary Building Units (M = Co ^{II} and Fe ^{II}) and 2,2′-Bipyridine-4,4′-dicarboxylic Acids. Inorganic Chemistry, 2014, 53, 7083-7085.	4.0	36
31	Assembly of â€~discrete' (H2O)16 water clusters within a supramolecular compound of calixarene. CrystEngComm, 2009, 11, 1213.	2.6	34
32	Progress in the Separation Processes for Rare Earth Resources. Fundamental Theories of Physics, 2015, 48, 287-376.	0.3	34
33	Synergistic extraction of lanthanum(III) from chloride medium by mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and triisobutylphosphine sulphide. Analytica Chimica Acta, 2003, 477, 251-256.	5.4	33
34	3D metal–organic frameworks incorporating water-soluble tetra-p-sulfonatocalix[4]arene. CrystEngComm, 2009, 11, 2282.	2.6	33
35	Extraction and separation of heavy rare earths from chloride medium by \hat{l}_{\pm} -aminophosphonic acid HEHAPP. Journal of Rare Earths, 2018, 36, 304-310.	4.8	33
36	Progress in the extraction and separation of rare earths and related metals with novel extractants: A review. Science China Technological Sciences, 2018, 61, 1319-1328.	4.0	33

#	Article	IF	CITATIONS
37	4.8 nm Concave {M72} (M=Co, Ni, Fe) metal-organic polyhedra capped by 18 calixarenes. Science China Chemistry, 2021, 64, 426-431.	8.2	33
38	Selective extraction and recovery of scandium from sulfate medium by Cextrant 230. Hydrometallurgy, 2018, 178, 54-59.	4.3	31
39	Preparation of high-purity thorium by solvent extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1651-1657.	1.5	30
40	Assembly of Supramolecular Compounds with Water-Soluble Calix[4] arenes. Crystal Growth and Design, 2008, 8, 3630-3635.	3.0	29
41	Separation of zirconium from hafnium in sulfate medium using solvent extraction with a new reagent BEAP. Hydrometallurgy, 2017, 169, 607-611.	4.3	29
42	Extraction and separation of rare earths from chloride medium with mixtures of 2â€ethylhexylphosphonic acid monoâ€(2â€ethylhexyl) ester and <i>sec</i> å€nonylphenoxy acetic acid. Journal of Chemical Technology and Biotechnology, 2009, 84, 1798-1802.	3.2	28
43	Extraction and separation of thorium and rare earths from nitrate medium with <i>p</i> à€phosphorylated calixarene. Journal of Chemical Technology and Biotechnology, 2013, 88, 1836-1840.	3.2	28
44	Solvent extraction and separation of rare earths from chloride media using $\hat{l}\pm$ -aminophosphonic acid extractant HEHAMP. Solvent Extraction and Ion Exchange, 2018, 36, 136-149.	2.0	28
45	Solvent extraction of rare earths from chloride medium with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and sec-octylphenoxyacetic acid. Separation and Purification Technology, 2009, 69, 97-101.	7.9	27
46	Calixarene-supported hexadysprosium cluster showing single molecule magnet behavior. Science China Chemistry, 2012, 55, 967-972.	8.2	24
47	Self-Assembly from Two-Dimensional Layered Networks to Tetranuclear Structures: Syntheses, Structures, and Properties of Four Copper-Thiacalix[4]arene Compounds. European Journal of Inorganic Chemistry, 2009, 2009, 4989-4994.	2.0	23
48	Selective extraction and recovery of copper from chloride solution using Cextrant 230. Hydrometallurgy, 2018, 181, 16-20.	4.3	23
49	Separation of trivalent rare earths from chloride medium using solvent extraction with heptylaminomethyl phosphonic acid 2-ethylhexyl ester (HEHHAP). Hydrometallurgy, 2019, 188, 14-21.	4.3	23
50	Three-phase extraction study of cyanex 923–n-heptane/H2SO4 system. Talanta, 2002, 57, 1085-1092.	5.5	22
51	Synergistic extraction of heavy rare earths by mixture ofÂα-aminophosphonic acid HEHAMP and HEHEHP. Journal of Rare Earths, 2019, 37, 422-428.	4.8	22
52	Constructing calixarene-supported high nuclearity Co ₂₇ , Co ₂₈ and Ni ₁₈ Na ₆ clusters with triazoles as co-bridges. CrystEngComm, 2015, 17, 2896-2902.	2.6	21
53	Selective Extraction and Separation of Ce (IV) and Th (IV) from RE(III) in Sulfate Medium using Di(2-ethylhexyl)- <i>N</i> -heptylaminomethylphosphonate. Solvent Extraction and Ion Exchange, 2017, 35, 117-129.	2.0	21
54	Synergistic solvent extraction of heavy rare earths from chloride media using mixture of HEHHAP and Cyanex272. Hydrometallurgy, 2020, 191, 105240.	4.3	20

#	Article	IF	CITATIONS
55	Lanthanideâ€Hinged Calixarene Bicapsules: Discrete Hexanuclear Ln ^{III} /Phenanthroline/ <i>p</i> â€Sulfonatocalix[4]arene Oligomers (Ln = Gd, Tb). European Journal of Inorganic Chemistry, 2008, 2008, 2959-2962.	2.0	19
56	Macroscopic single-crystal tubes assembled with porous supramolecular architecture of water-soluble calixarene and phenanthroline. Chemical Communications, 2009, , 1861.	4.1	19
57	Extraction and separation of trivalent rare earth metal ions from nitrate medium by p-phosphonic acid calix[4]arene. Hydrometallurgy, 2016, 165, 300-305.	4.3	19
58	Mass transfer kinetics of neodymium(III) extraction by calix[4] arene carboxylic acid using a constant interfacial area cell with laminar flow. Journal of Chemical Technology and Biotechnology, 2008, 83, 1314-1320.	3.2	18
59	1,2,3,4-Alternate double cone conformational extreme in the supramolecular assemblies of p-sulfonatocalix[8]arene. CrystEngComm, 2009, 11, 1803.	2.6	18
60	Cloud point extraction and separation of copper and lanthanoids using Triton X-100 with water-soluble p-sulfonatocalix[4] arene as a chelating agent. Mikrochimica Acta, 2010, 169, 297-301.	5.0	18
61	Singleâ€Moleculeâ€Magnet Behavior in a Calix[8]areneâ€Capped {Tb ₆ ^{lll} Cr ^{lll} } Cluster. European Journal of Inorganic Chemistry, 2017, 2017, 2088-2093.	2.0	18
62	Extraction and separation of thorium and rare earths with 5,11,17,23-tetra (diethoxyphosphoryl)-25,26,27,28-tetraacetoxycalix[4]arene. Journal of Rare Earths, 2012, 30, 1142-1145.	4.8	17
63	Kinetics of thorium extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate from nitric acid medium. Hydrometallurgy, 2013, 140, 66-70.	4.3	17
64	A metal–organic coordination nanotube based on Co4-TC4A subunits and V-shaped aromatic dicarboxylic acids. Journal of Molecular Structure, 2013, 1049, 310-314.	3.6	16
65	pH-dependent formation of different coordination cages based on Co ₄ -TC4A secondary building units and bridging ligands. CrystEngComm, 2016, 18, 4938-4943.	2.6	15
66	Recovery of Ga(III) from chloride solutions by solvent extraction with Cextrant 230. Hydrometallurgy, 2019, 185, 76-81.	4.3	15
67	A tetrahedral coordination cage based on p-tert-butylthiacalix[4]arene and 5-sulfoisophthalic acid. Inorganic Chemistry Communication, 2014, 41, 96-99.	3.9	14
68	A metal-calixarene coordination nanotube with 5-(pyrimidin-5-yl)isophthalic acid. Dalton Transactions, 2018, 47, 1782-1785.	3.3	14
69	Calixarene-Based {Co26} Burr Puzzle: An Efficient Oxygen Reduction Catalyst. ACS Applied Nano Materials, 2019, 2, 4232-4237.	5.0	14
70	Extraction and separation of yttrium from other rare earths in chloride medium by phosphorylcarboxylic acids. Journal of Rare Earths, 2022, 40, 958-964.	4.8	14
71	Solvent extraction studies of Sm(III) from nitrate medium and separation factors of rare earth elements with mixtures of <i>sec</i> actylphenoxyacetic acid and 1,10â€phenthroline. Journal of Chemical Technology and Biotechnology, 2010, 85, 793-797.	3. 2	13
72	A novel extractant bis(2-ethylhexyl) ((2-ethylhexylamino)methyl) phosphine oxide for cerium(IV) extraction and separation from sulfate medium. Journal of Rare Earths, 2020, 38, 1330-1336.	4.8	13

#	Article	IF	Citations
73	Extraction of rare earths using mixtures of sec-octylphenoxy acetic acid and organophosphorus acids. Korean Journal of Chemical Engineering, 2010, 27, 1258-1261.	2.7	12
74	A zigzag ladder-like metal–organic aggregate based on Co4-TC4A subunits and aromatic tricarboxylic acids. Journal of Molecular Structure, 2013, 1038, 206-210.	3.6	12
7 5	Assembly of Metal-Calixarene Compounds with a Ditetrazole Linker: From Isolated Cluster, Coordination Chain to Coordination Cage. Crystal Growth and Design, 2018, 18, 225-229.	3.0	12
76	A Tb-calixarene coordination chain for luminescent sensing of Fe3+, Cr2O72â^ and 2,4-DNT. Polyhedron, 2019, 163, 84-90.	2.2	12
77	Anion-Directed Assembly of Nickel-Calixarene Complexes: Constructing Isolated {Ni ₈ }, {Ni ₂₀ }, {Ni ₂₄ }, and {Ni ₃₂ } Clusters. Crystal Growth and Design, 2020, 20, 4164-4168.	3.0	11
78	THREE-PHASE EXTRACTION STUDY OF CYANEX 923-n-HEPTANE/Ce4+-H2SO4SYSTEM. Solvent Extraction and lon Exchange, 2002, 20, 251-262.	2.0	10
79	Synergistic extraction and separation study of rare earth elements from nitrate medium by mixtures of sec-nonylphenoxy acetic acid and 2,2′-bipyridyl. Journal of Chemical Technology and Biotechnology, 2011, 86, 719-723.	3.2	9
80	A 2D metal–calixarene aggregate involving in situ generated 5-(4-pyridyl)tetrazolate ligand. Inorganic Chemistry Communication, 2014, 47, 152-154.	3.9	9
81	Bridging cobalt–calixarene subunits into a Co8 entity or a chain with 4,4′-bipyridyl. Journal of Molecular Structure, 2014, 1060, 58-62.	3.6	8
82	1D morning glory-like calixarene-based coordination polymers as a support for Au/Ag nanoparticles. Polyhedron, 2017, 130, 75-80.	2.2	8
83	A Calixareneâ€based {Co ₉ } Coordination Triangle as an Efficient Heterogenous Catalyst. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 160-165.	1.2	8
84	Syntheses, structures and magnetic properties of [Ln ^{II} ₈] (Ln = Sm, Gd, Dy) clusters capped by <italic>p-tert</italic> -butylcalix[8]arenes. Scientia Sinica Chimica, 2012, 42, 1356-1363.	0.4	8
85	Constructing [Coll6] hexagon-centered heterometallic {Ln ₆ Co ₆ } (Ln = Y, Eu) Tj ETQq1	1 0.7843 6.0	14 ₇ rgBT /Ove
86	Separation of trivalent rare earths from nitrate medium using solvent extraction with a novel extractant 2-ethylhexyl ((2-ethylhexylamino)methyl) phosphonic acid. Journal of Rare Earths, 2022, 40, 491-500.	4.8	7
87	A porous 2D cobalt-sulfonylcalix[4]arene coordination polymer for gas adsorption. Journal of Molecular Structure, 2021, 1237, 130392.	3.6	7
88	Calixarene-Based {Ni14} Seesaws: Active Chloride Anions to be Substituted by Isophthalic Acids. Crystal Growth and Design, 2016, 16, 6696-6699.	3.0	6
89	Removal of aluminum from chloride leach solutions of rare earths using 3-((bis(2-ethylhexyloxy))phosphoryl)-3-phenylpropanoic acid (PPPA). Hydrometallurgy, 2022, 208, 105825.	4.3	6
90	Separation of rare earths in chloride media by synergistic solvent extraction with mixture of HEHAMP and CA12 and stripping with HCl. Hydrometallurgy, 2022, 213, 105912.	4.3	6

#	Article	IF	CITATIONS
91	Single-Molecule Magnetic Behavior in a Calix[8]arene-Capped Heterometallic {Dylll 4 Coll 4 } Square-Antiprismatic Cluster. European Journal of Inorganic Chemistry, 2017, 2017, 4879-4883.	2.0	5
92	Two sulfur and nitrogen-rich cobalt–thiacalix[4]arene compounds for the selective mercury removal from aqueous solutions. CrystEngComm, 2020, 22, 7668-7672.	2.6	5
93	Extraction and Separation of Rare Earths from Nitrate Medium by Mixtures of ⟨i⟩p⟨ i⟩â€Phosphorylated Calixarene and 1â€Phenylâ€3â€methylâ€4â€benzoylâ€pyrazaloneâ€5. Chinese Journal of Chemistry, 2014, 32, 10	0 47 ⁹ 1082.	4
94	A window frame-like square constructed by bridging Co 4 -(TC4A-SO 2) SBUs with 1,3-bis(2H-tertazol-5-yl)benzene. Journal of Molecular Structure, 2018, 1151, 29-33.	3.6	4
95	Progress in developing the novel extractants for rare earths. Scientia Sinica Chimica, 2020, 50, 1473-1485.	0.4	4
96	A Novel Europium Carbodiimide that Contains Isolated Europium Tetrahedra and Parallel Chains of Edge-Sharing Open Handbag-Like Eu6 Units. European Journal of Inorganic Chemistry, 2006, 2006, 4233-4236.	2.0	3
97	Physicochemical properties, surface active species and formation of reverse micelles in the Cyanex 923â€∢i>ni>â€heptane/cerium(IV)â€H ₂ SO ₄ extraction system. Journal of Chemical Technology and Biotechnology, 2008, 83, 1056-1063.	3.2	3
98	Constructing p-sulfonatothiacalix[4]arene-based coordination squares as new type of efficient proton-conducting solid electrolytes. Inorganica Chimica Acta, 2021, 514, 120027.	2.4	3
99	Organoamine-induced isomerism of calixarene-based complexes: from 1D to 2D. RSC Advances, 2018, 8, 39208-39213.	3.6	2
100	Eu–Mn Charge Transfer and the Strong Charge–Spin–Electronic Coupling Behavior in EuMnO ₃ . Inorganic Chemistry, 2021, 60, 1367-1379.	4.0	2
101	A calixarene-capped round-cake like {Fe24} coordination cage involving the shuttlecock-like Fe4-TC4A SBUs. Inorganic Chemistry Communication, 2020, 113, 107801.	3.9	1
102	Assembly of cobalt- <i>p</i> -sulfonatothiacalix[4]arene frameworks with phosphate, phosphite and phenylphosphonate ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 827-833.	0.7	0
103	Acid/base regulated syntheses of different 1D coordination chains for selective mercury removal from aqueous solution. Journal of Solid State Chemistry, 2022, 308, 122908.	2.9	О