
Gumaa A M El-Nagar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1537456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Electrospun Nanofibers as Electrocatalyst for Vanadium Redox Flow Batteries: Theory and Experiment. ChemElectroChem, 2021, 8, 218-226.	1.7	6
2	Electrocatalyst Derived from Waste Cu–Sn Bronze for CO ₂ Conversion into CO. ACS Applied Materials & Interfaces, 2021, 13, 38161-38169.	4.0	16
3	Fabrication of an efficient vanadium redox flow battery electrode using a free-standing carbon-loaded electrospun nanofibrous composite. Scientific Reports, 2020, 10, 11153.	1.6	16
4	Facile Synthesis of Hierarchical CuS and CuCo ₂ S ₄ Structures from an Ionic Liquid Precursor for Electrocatalysis Applications. ACS Applied Materials & Interfaces, 2020, 12, 52560-52570.	4.0	20
5	Electrocatalysis by design: Enhanced electro-oxidation of glycerol at NiOx nanoparticle modified 3D porous carbon felts. International Journal of Hydrogen Energy, 2020, 45, 9658-9668.	3.8	30
6	Tailorâ€Designed Porous Catalysts: Nickelâ€Doped Cu/Cu ₂ O Foams for Efficient Glycerol Electroâ€Oxidation. ChemElectroChem, 2020, 7, 951-958.	1.7	19
7	Detrimental role of hydrogen evolution and its temperature-dependent impact on the performance of vanadium redox flow batteries. Journal of Energy Chemistry, 2019, 32, 57-62.	7.1	44
8	Conformal Solution Deposition of Pt-Pd Titania Nanocomposite Coatings for Light-Assisted Formic Acid Electro-Oxidation. ACS Applied Materials & amp; Interfaces, 2019, 11, 43081-43092.	4.0	17
9	Enhanced electrocatalytic oxidation of glucose at graphene nanosheets – Metal oxides nanoparticles modified GC electrodes. Journal of Electroanalytical Chemistry, 2019, 835, 313-323.	1.9	20
10	Silver–Iron Hierarchical Microflowers for Highly Efficient H ₂ O ₂ Nonenzymatic Amperometric Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 4335-4342.	3.2	18
11	Platinum Nanostructure Tailoring for Fuel Cell Applications Using Levitated Water Droplets as Green Chemical Reactors. ACS Applied Materials & Interfaces, 2019, 11, 22398-22407.	4.0	7
12	Electrodeposited AgCu Foam Catalysts for Enhanced Reduction of CO ₂ to CO. ACS Applied Materials & Interfaces, 2019, 11, 14734-14744.	4.0	71
13	Degradation Phenomena of Bismuth-Modified Felt Electrodes in VRFB Studied by Electrochemical Impedance Spectroscopy. Batteries, 2019, 5, 16.	2.1	20
14	Tailored dendritic platinum nanostructures as a robust and efficient direct formic acid fuel cell anode. New Journal of Chemistry, 2019, 43, 4100-4105.	1.4	10
15	Comparison of Electrospun Carbonâ~'Carbon Composite and Commercial Felt for Their Activity and Electrolyte Utilization in Vanadium Redox Flow Batteries. ChemElectroChem, 2019, 6, 130-135.	1.7	27
16	Comparison of Electrospun Carbonâ^'Carbon Composite and Commercial Felt for Their Activity and Electrolyte Utilization in Vanadium Redox Flow Batteries. ChemElectroChem, 2019, 6, 6-6.	1.7	5
17	Hierarchically structured iron-doped silver (Ag–Fe) lotus flowers for an efficient oxygen reduction reaction. Nanoscale, 2018, 10, 7304-7310.	2.8	12
18	A neodymium oxide nanoparticle-doped carbon felt as promising electrode for vanadium redox flow batteries. Electrochimica Acta, 2018, 268, 59-65.	2.6	67

Gumaa A M El-Nagar

#	Article	IF	CITATIONS
19	Activation/deactivation behavior of nano-NiOx based anodes towards the OER: Influence of temperature. Electrochimica Acta, 2018, 276, 176-183.	2.6	30
20	A promising N-doped carbon-metal oxide hybrid electrocatalyst derived from crustacean's shells: Oxygen reduction and oxygen evolution. Applied Catalysis B: Environmental, 2017, 214, 137-147.	10.8	45
21	Efficient direct formic acid fuel cell (DFAFC) anode of nano-sized palladium complex: High durability and activity origin. Applied Catalysis B: Environmental, 2017, 213, 118-126.	10.8	32
22	Propitious Dendritic Cu ₂ O–Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 19766-19772.	4.0	39
23	Enhanced electrooxidation of glucose at nano-chitosan–NiOOH modified GC electrode: fuel blends and hydrocarbon impurities. Physical Chemistry Chemical Physics, 2017, 19, 2537-2548.	1.3	8
24	Auspicious Metal-Doped-Cu ₂ O/Cu Dendrite (M=Ni, Co, Fe) Catalysts for Direct Alkaline Fuel Cells: Effect of Dopants <i><i></i>:<i i="">. ECS Transactions, 2017, 80, 1013-1022.</i></i>	0.3	13
25	Efficient 3D-Silver Flower-like Microstructures for Non-Enzymatic Hydrogen Peroxide (H2O2) ÂAmperometricÂDetection. Scientific Reports, 2017, 7, 12181.	1.6	19
26	One-pot synthesis of a high performance chitosan-nickel oxyhydroxide nanocomposite for glucose fuel cell and electro-sensing applications. Applied Catalysis B: Environmental, 2017, 204, 185-199.	10.8	33
27	Efficient Direct Formic Acid Fuel Cells (DFAFCs) Anode Derived from Seafood waste: Migration Mechanism. Scientific Reports, 2017, 7, 17818.	1.6	19
28	Auspicious Metal-Doped-Cu2O/Cu Dendrite (M=Ni, Co, Fe) Catalysts for Direct Alkaline Fuel Cells: Effect of Dopants. ECS Meeting Abstracts, 2017, , .	0.0	0
29	A novel nano-palladium complex anode for formic acid electro-oxidation. Electrochimica Acta, 2016, 215, 334-338.	2.6	16
30	Impurityâ€Induced Electrocatalysis: Unpredicted Enhancement Effect of Ammonia Impurity Towards Formic Acid Electroâ€Oxidation. ChemistrySelect, 2016, 1, 5706-5711.	0.7	0
31	Novel fuel blends facilitating the electro-oxidation of formic acid at a nano-Pt/GC electrode. RSC Advances, 2016, 6, 29099-29105.	1.7	13
32	The Origin of Electrocatalytic Activity of Gold Nanoparticles Modified Pt-Based Surfaces Towards Formic Acid Oxidation. Springer Proceedings in Energy, 2015, , 379-387.	0.2	2
33	Towards improving the catalytic activity and stability of platinum-based anodes in direct formic acid fuel cells. International Journal of Hydrogen Energy, 2015, 40, 7808-7816.	3.8	48
34	Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes. Journal of Power Sources, 2015, 286, 504-509.	4.0	27
35	Electrocatalysis of Formic Acid Electro-Oxidation at Platinum Nanoparticles Modified Surfaces with Nickel and Cobalt Oxides Nanostructures. , 2015, , 577-594.		6
36	Electro-Oxidation of Formic Acid, Glucose, and Methanol at Nickel Oxide Nanoparticle Modified		3

Platinum Electrodes., 2015,, 595-604.

Gumaa A M El-Nagar

#	Article	IF	CITATIONS
37	Promoting Effect of Hydrocarbon Impurities on the Electro-Oxidation of Formic Acid at Pt Nanoparticles Modified GC Electrodes. Electrochimica Acta, 2015, 180, 268-279.	2.6	23
38	Impurities Contributing to Catalysis: Enhanced Electro-Oxidation of Formic Acid at Pt/GC Electrodes in the Presence of Vinyl Acetate. Journal of Physical Chemistry C, 2014, 118, 22457-22464.	1.5	28
39	Enhanced electrocatalytic activity and stability of platinum, gold, and nickel oxide nanoparticles-based ternary catalyst for formic acid electro-oxidation. International Journal of Hydrogen Energy, 2014, 39, 11955-11962.	3.8	46
40	Acrylonitrile-contamination induced enhancement of formic acid electro-oxidation at platinum nanoparticles modified glassy carbon electrodes. Journal of Power Sources, 2014, 265, 57-61.	4.0	34
41	Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochimica Acta, 2013, 94, 62-71.	2.6	67
42	Facilitated Electro-Oxidation of Formic Acid at Nickel Oxide Nanoparticles Modified Electrodes. Journal of the Electrochemical Society, 2012, 159, F249-F254.	1.3	41