Andrew Dove

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1537207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stereocontrolled ring-opening polymerisation of lactide. Chemical Society Reviews, 2010, 39, 486-494.	38.1	755
2	Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 2006, 39, 8574-8583.	4.8	689
3	Organic Catalysis for Ring-Opening Polymerization. ACS Macro Letters, 2012, 1, 1409-1412.	4.8	438
4	Critical advances and future opportunities in upcycling commodity polymers. Nature, 2022, 603, 803-814.	27.8	404
5	Thiourea-Based Bifunctional Organocatalysis:Â Supramolecular Recognition for Living Polymerization. Journal of the American Chemical Society, 2005, 127, 13798-13799.	13.7	380
6	Exploration, Optimization, and Application of Supramolecular Thioureaâ^'Amine Catalysts for the Synthesis of Lactide (Co)polymers. Macromolecules, 2006, 39, 7863-7871.	4.8	371
7	Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chemical Science, 2011, 2, 955-960.	7.4	310
8	Organocatalytic Ring Opening Polymerization of Trimethylene Carbonate. Biomacromolecules, 2007, 8, 153-160.	5.4	302
9	Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chemical Society Reviews, 2013, 42, 1312-1336.	38.1	302
10	Plastics recycling with a difference. Science, 2018, 360, 380-381.	12.6	296
11	Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chemical Communications, 2008, , 6446.	4.1	279
12	Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chemical Society Reviews, 2017, 46, 6255-6275.	38.1	268
13	Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomaterials Science, 2017, 5, 9-21.	5.4	261
14	Synthetic, Structural, Mechanistic, and Computational Studies on Single-Site β-Diketiminate Tin(II) Initiators for the Polymerization ofrac-Lactide. Journal of the American Chemical Society, 2006, 128, 9834-9843.	13.7	209
15	Organocatalysis for depolymerisation. Polymer Chemistry, 2019, 10, 172-186.	3.9	207
16	Simultaneous Orthogonal Dual-Click Approach to Tough, <i>in-Situ</i> -Forming Hydrogels for Cell Encapsulation. Journal of the American Chemical Society, 2015, 137, 1618-1622.	13.7	197
17	Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Progress in Polymer Science, 2014, 39, 1144-1164.	24.7	189
18	Stereochemical enhancement of polymer properties. Nature Reviews Chemistry, 2019, 3, 514-535.	30.2	188

#	Article	IF	CITATIONS
19	Metal free thiol–maleimide â€~Click' reaction as a mild functionalisation strategy for degradable polymers. Chemical Communications, 2008, , 5158.	4.1	186
20	Magnesium and zinc complexes of a potentially tridentate β-diketiminate ligand. Dalton Transactions, 2004, , 570-578.	3.3	183
21	Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt. Green Chemistry, 2018, 20, 1205-1212.	9.0	182
22	Additive-Free Clicking for Polymer Functionalization and Coupling by Tetrazine–Norbornene Chemistry. Journal of the American Chemical Society, 2011, 133, 13828-13831.	13.7	175
23	100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics. ACS Macro Letters, 2020, 9, 1494-1506.	4.8	172
24	Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chemical Communications, 2006, , 2881.	4.1	169
25	Single-Component Catalyst/Initiators for the Organocatalytic Ring-Opening Polymerization of Lactide. Journal of the American Chemical Society, 2005, 127, 9079-9084.	13.7	168
26	Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nature Communications, 2020, 11, 1420.	12.8	167
27	1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chemical Science, 2017, 8, 4223-4230.	7.4	165
28	Precision Epitaxy for Aqueous 1D and 2D Poly(Îμ-caprolactone) Assemblies. Journal of the American Chemical Society, 2017, 139, 16980-16985.	13.7	159
29	Towards poly(ester) nanoparticles: recent advances in the synthesis of functional poly(ester)s by ring-opening polymerization. Polymer Chemistry, 2010, 1, 260.	3.9	154
30	Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chemical Reviews, 2021, 121, 10865-10907.	47.7	150
31	Alcohol Adducts ofN-Heterocyclic Carbenes:Â Latent Catalysts for the Thermally-Controlled Living Polymerization of Cyclic Esters. Macromolecules, 2006, 39, 5617-5628.	4.8	144
32	Latent, Thermally Activated Organic Catalysts for the On-Demand Living Polymerization of Lactide. Angewandte Chemie - International Edition, 2005, 44, 4964-4968.	13.8	142
33	N-Heterocyclic carbenes: Effective organic catalysts for living polymerization. Polymer, 2006, 47, 4018-4025.	3.8	141
34	A well defined tin(ii) initiator for the living polymerisation of lactide. Chemical Communications, 2001, , 283-284.	4.1	135
35	Organocatalytic Synthesis and Postpolymerization Functionalization of Allyl-Functional Poly(carbonate)s. Macromolecules, 2011, 44, 2084-2091.	4.8	134
36	Recent Advances and Challenges in the Design of Organic Photoacid and Photobase Generators for Polymerizations. Angewandte Chemie - International Edition, 2019, 58, 10410-10422.	13.8	132

#	Article	IF	CITATIONS
37	Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YICSR peptide. Biomaterials, 2013, 34, 9089-9095.	11.4	130
38	Synthesis of Poly(lactide)s with Modified Thermal and Mechanical Properties. Macromolecular Rapid Communications, 2010, 31, 1923-1937.	3.9	128
39	Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nature Communications, 2014, 5, 5746.	12.8	125
40	Update and Challenges in Carbon Dioxideâ€Based Polycarbonate Synthesis. ChemSusChem, 2020, 13, 469-487.	6.8	121
41	N-Heterocyclic carbenes as organocatalysts for polymerizations: trends and frontiers. Polymer Chemistry, 2015, 6, 3185-3200.	3.9	118
42	Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: Evolution toward Simplicity. Journal of the American Chemical Society, 2015, 137, 14439-14445.	13.7	118
43	Selective Chemical Upcycling of Mixed Plastics Guided by a Thermally Stable Organocatalyst. Angewandte Chemie - International Edition, 2021, 60, 6710-6717.	13.8	118
44	Tuning the Size of Cylindrical Micelles from Poly(<scp>l</scp> -lactide)- <i>b</i> -poly(acrylic acid) Diblock Copolymers Based on Crystallization-Driven Self-Assembly. Macromolecules, 2013, 46, 9074-9082.	4.8	113
45	Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response. ACS Macro Letters, 2016, 5, 1059-1064.	4.8	112
46	Self-assembly of cyclic polymers. Polymer Chemistry, 2015, 6, 2998-3008.	3.9	111
47	Low coordinate magnesium chemistry supported by a bulky β-diketiminate ligand. Dalton Transactions, 2003, , 3088-3097.	3.3	109
48	Organocatalytic, Regioselective Nucleophilic "Click―Addition of Thiols to Propiolic Acid Esters for Polymer–Polymer Coupling. Angewandte Chemie - International Edition, 2013, 52, 4132-4136.	13.8	109
49	Nâ€Heterocyclic Olefins as Organocatalysts for Polymerization: Preparation of Wellâ€Defined Poly(propylene oxide). Angewandte Chemie - International Edition, 2015, 54, 9550-9554.	13.8	105
50	Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via "Living―Crystallization-Driven Self-Assembly of Poly(<scp>I</scp> -lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption. Journal of the American Chemical Society, 2019, 141, 19088-19098.	13.7	104
51	Crystallization-driven sphere-to-rod transition of poly(lactide)-b-poly(acrylic acid) diblock copolymers: mechanism and kinetics. Soft Matter, 2012, 8, 7408.	2.7	101
52	Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry. Chemical Reviews, 2021, 121, 6744-6776.	47.7	99
53	Synthesis and Functionalization of Thiol-Reactive Biodegradable Polymers. Macromolecules, 2012, 45, 1715-1722.	4.8	98
54	Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS Central Science, 2018, 4, 63-70.	11.3	94

#	Article	IF	CITATIONS
55	Synthesis and postâ€polymerization modification of maleimideâ€containing polymers by â€~thiolâ€ene' click and Diels–Alder chemistries. Polymer International, 2011, 60, 1149-1157.	3.1	91
56	â€~Immortal' ring-opening polymerization of ω-pentadecalactone by Mg(BHT) ₂ (THF) ₂ . Polymer Chemistry, 2014, 5, 2691-2694.	3.9	85
57	One-Pot Synthesis of α,ï‰-Chain End Functional, Stereoregular, Star-Shaped Poly(lactide). Macromolecules, 2009, 42, 141-147.	4.8	84
58	Organocatalytic ring-opening polymerization of l-lactide in bulk: A long standing challenge. European Polymer Journal, 2017, 95, 628-634.	5.4	83
59	Synthesis of ω-Pentadecalactone Copolymers with Independently Tunable Thermal and Degradation Behavior. Macromolecules, 2015, 48, 950-958.	4.8	78
60	A Simple and Efficient Synthesis of an Acid-Labile Polyphosphoramidate by Organobase-Catalyzed Ring-Opening Polymerization and Transformation to Polyphosphoester Ionomers by Acid Treatment. Macromolecules, 2013, 46, 5141-5149.	4.8	77
61	Synthesis of Stereoregular Cyclic Poly(lactide)s via "Thiolâ^'Ene―Click Chemistry. Macromolecules, 2010, 43, 6538-6541.	4.8	76
62	Functional Degradable Polymers by Xanthate-Mediated Polymerization. Macromolecules, 2014, 47, 2847-2852.	4.8	76
63	Highly Polarized Alkenes as Organocatalysts for the Polymerization of Lactones and Trimethylene Carbonate. ACS Macro Letters, 2016, 5, 134-138.	4.8	76
64	In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering. Biomaterials Science, 2014, 2, 167-175.	5.4	75
65	Ring-opening polymerization of an O-carboxyanhydride monomer derived from l-malic acid. Polymer Chemistry, 2011, 2, 2204.	3.9	71
66	Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules, 2015, 16, 2049-2058.	5.4	69
67	Synthesis of Functionalized Cyclic Carbonates through Commodity Polymer Upcycling. ACS Macro Letters, 2020, 9, 443-447.	4.8	69
68	Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polymer Chemistry, 2014, 5, 1427-1436.	3.9	68
69	Rational Study of DBU Salts for the CO ₂ Insertion into Epoxides for the Synthesis of Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2019, 7, 10633-10640.	6.7	68
70	Nonswelling Thiol–Yne Cross-Linked Hydrogel Materials as Cytocompatible Soft Tissue Scaffolds. Biomacromolecules, 2018, 19, 1378-1388.	5.4	67
71	Orthogonal Modification of Norbornene-Functional Degradable Polymers. ACS Macro Letters, 2012, 1, 1285-1290.	4.8	64
72	Synthesis and Organocatalytic Ring-Opening Polymerization of Cyclic Esters Derived from <scp>l</scp> -Malic Acid. Biomacromolecules, 2010, 11, 1930-1939.	5.4	63

#	Article	IF	CITATIONS
73	Efficient In Situ Nucleophilic Thiol-yne Click Chemistry for the Synthesis of Strong Hydrogel Materials with Tunable Properties. ACS Macro Letters, 2017, 6, 93-97.	4.8	63
74	Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Letters, 2019, 8, 596-602.	4.8	63
75	Isoselective Ring-Opening Polymerization of <i>rac</i> -Lactide from Chiral Takemoto's Organocatalysts: Elucidation of Stereocontrol. ACS Macro Letters, 2018, 7, 1413-1419.	4.8	62
76	3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules, 2020, 21, 1037-1059.	5.4	61
77	Cyclic Graft Copolymer Unimolecular Micelles: Effects of Cyclization on Particle Morphology and Thermoresponsive Behavior. Macromolecules, 2016, 49, 2802-2813.	4.8	60
78	4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nature Communications, 2021, 12, 3771.	12.8	59
79	Metal-Free Functionalization of Linear Polyurethanes by Thiol-Maleimide Coupling Reactions. Macromolecules, 2011, 44, 7874-7878.	4.8	57
80	Nanosponge Formation from Organocatalytically Synthesized Poly(carbonate) Copolymers. ACS Macro Letters, 2012, 1, 915-918.	4.8	56
81	Preparation of in situ-forming poly(5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one)-poly(ethylene glycol) hydrogels with tuneable swelling, mechanical strength and degradability. Journal of Materials Chemistry B, 2013, 1, 221-229.	5.8	56
82	Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nature Communications, 2020, 11, 3250.	12.8	56
83	Nâ€Heterocyclic carbenes for metalâ€free polymerization catalysis: an update. Polymer International, 2016, 65, 16-27.	3.1	55
84	Triarylsulfonium hexafluorophosphate salts as photoactivated acidic catalysts for ring-opening polymerisation. Chemical Communications, 2013, 49, 1205.	4.1	53
85	Dual-catalytic depolymerization of polyethylene terephthalate (PET). Polymer Chemistry, 2020, 11, 1450-1453.	3.9	53
86	Tetrazineâ€Norbornene Click Reactions to Functionalize Degradable Polymers Derived from Lactide. Macromolecular Rapid Communications, 2011, 32, 1362-1366.	3.9	51
87	Controlling the synthesis of degradable vinyl polymers by xanthate-mediated polymerization. Polymer Chemistry, 2015, 6, 7447-7454.	3.9	51
88	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie - International Edition, 2017, 56, 9178-9182.	13.8	51
89	Terpene- and terpenoid-based polymeric resins for stereolithography 3D printing. Polymer Chemistry, 2019, 10, 5959-5966.	3.9	50
90	Robust alginate/hyaluronic acid thiol–yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomaterials Science, 2020, 8, 405-412.	5.4	48

#	Article	IF	CITATIONS
91	Size and shape affects the antimicrobial activity of quaternized nanoparticles. Journal of Polymer Science Part A, 2019, 57, 255-259.	2.3	47
92	Selective Reactivity of Myrcene for Vat Photopolymerization 3D Printing and Postfabrication Surface Modification. Biomacromolecules, 2020, 21, 163-170.	5.4	47
93	Organocatalytic synthesis and post-polymerization functionalization of propargyl-functional poly(carbonate)s. Polymer Chemistry, 2013, 4, 174-183.	3.9	46
94	Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity. ACS Macro Letters, 2017, 6, 1404-1408.	4.8	45
95	Independent Control of Elastomer Properties through Stereocontrolled Synthesis. Angewandte Chemie - International Edition, 2016, 55, 13076-13080.	13.8	43
96	Understanding the CDSA of poly(lactide) containing triblock copolymers. Polymer Chemistry, 2017, 8, 5504-5512.	3.9	43
97	Synthesis and Postpolymerization Modification of One-Pot ω-Pentadecalactone Block-like Copolymers. Biomacromolecules, 2015, 16, 3191-3200.	5.4	41
98	Length Control of Biodegradable Fiber-Like Micelles via Tuning Solubility: A Self-Seeding Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-Containing Triblock Copolymers. Macromolecules, 2020, 53, 1514-1521.	4.8	41
99	Polymers from macrolactones: From pheromones to functional materials. Progress in Polymer Science, 2019, 91, 29-50.	24.7	40
100	A well-defined magnesium enolate initiator for the living and highly syndioselective polymerisation of methylmethacrylateElectronic supplementary information (ESI) available: synthetic and polymerisation details. See http://www.rsc.org/suppdata/cc/b2/b201896a/. Chemical Communications, 2002, , 1208-1209.	4.1	39
101	Benzyl bispidine as an efficient replacement for (â^')-sparteine in ring opening polymerisation. Chemical Science, 2013, 4, 1092.	7.4	39
102	Poly(<scp>d</scp> -glucose carbonate) Block Copolymers: A Platform for Natural Product-Based Nanomaterials with Solvothermatic Characteristics. Biomacromolecules, 2013, 14, 3346-3353.	5.4	38
103	Photoinduced ring-opening polymerisation of <scp>l</scp> -lactide <i>via</i> a photocaged superbase. Chemical Communications, 2018, 54, 6264-6267.	4.1	36
104	Harnessing the Chemical Diversity of the Natural Product Magnolol for the Synthesis of Renewable, Degradable Neolignan Thermosets with Tunable Thermomechanical Characteristics and Antioxidant Activity. Biomacromolecules, 2019, 20, 109-117.	5.4	35
105	Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s. ACS Macro Letters, 2020, 9, 226-232.	4.8	35
106	Postpolymerization Modifications of Alkeneâ€Functional Polycarbonates for the Development of Advanced Materials Biomaterials. Macromolecular Bioscience, 2016, 16, 1762-1775.	4.1	34
107	Additiveâ€Free Green Lightâ€Induced Ligation Using BODIPY Triggers. Angewandte Chemie - International Edition, 2020, 59, 2284-2288.	13.8	34
108	Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering. Nature Communications, 2021, 12, 446.	12.8	34

#	Article	IF	CITATIONS
109	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
110	Cyclopentadienyl titanium hydroxylaminato complexes as highly active catalysts for the polymerization of propylene. Chemical Communications, 2005, , 2152.	4.1	33
111	Development of Amino–Oxazoline and Amino–Thiazoline Organic Catalysts for the Ringâ€Opening Polymerisation of Lactide. Chemistry - A European Journal, 2010, 16, 6099-6105.	3.3	33
112	Precious metal carborane polymer nanoparticles: characterisation of micellar formulations and anticancer activity. Faraday Discussions, 2014, 175, 229-240.	3.2	33
113	A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering. Biomaterials Science, 2014, 2, 472-475.	5.4	32
114	Hollow Block Copolymer Nanoparticles through a Spontaneous One-step Structural Reorganization. ACS Nano, 2013, 7, 1120-1128.	14.6	31
115	Fabrication of 3-Dimensional Cellular Constructs via Microstereolithography Using a Simple, Three-Component, Poly(Ethylene Glycol) Acrylate-Based System. Biomacromolecules, 2013, 14, 186-192.	5.4	31
116	Fabrication of crystals from single metal atoms. Nature Communications, 2014, 5, 3851.	12.8	31
117	Self-healing, stretchable and robust interpenetrating network hydrogels. Biomaterials Science, 2018, 6, 2932-2937.	5.4	31
118	Selective Organocatalytic Preparation of Trimethylene Carbonate from Oxetane and Carbon Dioxide. ACS Catalysis, 2020, 10, 5399-5404.	11.2	31
119	Dependence of Copolymer Sequencing Based on Lactone Ring Size and ε-Substitution. ACS Macro Letters, 2016, 5, 346-350.	4.8	30
120	Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules. Journal of the American Chemical Society, 2020, 142, 19689-19697.	13.7	26
121	Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials, 2018, 178, 435-447.	11.4	25
122	Unlocking the Potential of Poly(<i>Ortho</i> Ester)s: A General Catalytic Approach to the Synthesis of Surfaceâ€Erodible Materials. Angewandte Chemie - International Edition, 2017, 56, 16664-16668.	13.8	24
123	Metal-free synthesis of poly(trimethylene carbonate) by efficient valorization of carbon dioxide. Green Chemistry, 2019, 21, 472-477.	9.0	24
124	Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. Journal of the American Chemical Society, 2022, 144, 1243-1250.	13.7	24
125	Renewable and recyclable covalent adaptable networks based on bio-derived lipoic acid. Polymer Chemistry, 2021, 12, 5796-5802.	3.9	23

126 N-Heterocyclic Carbenes as Organic Catalysts. , 2006, , 275-296.

22

#	Article	IF	CITATIONS
127	Synthesis of aliphatic polycarbonates with a tuneable thermal response. Polymer Chemistry, 2017, 8, 5082-5090.	3.9	21
128	Synthesis of Rapidly Surface Eroding Polyorthoesters and Polyacetals Using Thiol–ene Click Chemistry. ACS Macro Letters, 2019, 8, 1268-1274.	4.8	20
129	Selective Chemical Upcycling of Mixed Plastics Guided by a Thermally Stable Organocatalyst. Angewandte Chemie, 2021, 133, 6784-6791.	2.0	20
130	Propylene Polymerization with Cyclopentadienyltitanium(IV) Hydroxylaminato Complexes. Organometallics, 2009, 28, 405-412.	2.3	19
131	Control over molar mass, dispersity, end-groups and kinetics in cyclopolymerization of ortho-phthalaldehyde: adapted choice of a phosphazene organocatalyst. Polymer Chemistry, 2014, 5, 706-711.	3.9	19
132	Surface grafted poly(ε-caprolactone) prepared using organocatalysed ring-opening polymerisation followed by SI-ATRP. Polymer Chemistry, 2014, 5, 2809-2815.	3.9	19
133	Synthesis and post-polymerisation modification of an epoxy-functional polycarbonate. Polymer Chemistry, 2016, 7, 7108-7115.	3.9	19
134	Organocatalytic synthesis of astaxanthin-containing poly(lactide)s. Polymer Chemistry, 2011, 2, 595-600.	3.9	18
135	Morpholine-functionalized polycarbonate hydrogels for heavy metal ion sequestration. Polymer Chemistry, 2013, 4, 1260-1270.	3.9	18
136	Stepâ€Growth Polymerization in the 21st Century. Macromolecular Chemistry and Physics, 2014, 215, 2135-2137.	2.2	18
137	Block copolymer materials from the organocatalytic ring-opening polymerization of a pentaerythritol-derived cyclic carbonate. Journal of Polymer Science Part A, 2014, 52, 2279-2286.	2.3	18
138	Chaining up carbon dioxide. Nature Chemistry, 2014, 6, 276-277.	13.6	18
139	Efficient polymerization and post-modification of <i>N</i> -substituted eight-membered cyclic carbonates containing allyl groups. Polymer Chemistry, 2018, 9, 2458-2467.	3.9	18
140	Unsaturated Poly(ester-urethanes) with Stereochemically Dependent Thermomechanical Properties. Macromolecules, 2020, 53, 174-181.	4.8	17
141	Degradable graft copolymers by ring-opening and reverse addition–fragmentation chain transfer polymerization. Polymer Chemistry, 2012, 3, 2156.	3.9	16
142	Amphiphilic block copolymer selfâ€assemblies of poly(NVP)â€ <i>b</i> â€poly(MDOâ€ <i>co</i> â€vinyl esters): Tunable dimensions and functionalities. Journal of Polymer Science Part A, 2015, 53, 2699-2710.	2.3	16
143	Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol–ene radical reactions. Polymer Chemistry, 2016, 7, 2337-2341.	3.9	16
144	Reversible ionically-crosslinked single chain nanoparticles as bioinspired and recyclable nanoreactors for <i>N</i> -heterocyclic carbene organocatalysis. Polymer Chemistry, 2018, 9, 5286-5294.	3.9	16

#	Article	IF	CITATIONS
145	Stereocomplexation in novel degradable amphiphilic block copolymer micelles of poly(ethylene oxide) and poly(benzyl α-malate). Soft Matter, 2011, 7, 10987.	2.7	15
146	Exploiting topology-directed nanoparticle disassembly for triggered drug delivery. Biomaterials, 2018, 180, 184-192.	11.4	15
147	Stereoselective ROP of rac- and meso-Lactides Using Achiral TBD as Catalyst. Catalysts, 2020, 10, 620.	3.5	15
148	Stereochemistry-Controlled Mechanical Properties and Degradation in 3D-Printable Photosets. Journal of the American Chemical Society, 2021, 143, 17510-17516.	13.7	15
149	Synthetic strategies, sustainability and biological applications of malic acid–based polymers. Green Materials, 2014, 2, 107-122.	2.1	14
150	Osmium Atoms and Os ₂ Molecules Move Faster on Selenium-Doped Compared to Sulfur-Doped Boronic Graphenic Surfaces. Chemistry of Materials, 2015, 27, 5100-5105.	6.7	14
151	Crosslinked Internal Alkyne-Based Stereo Elastomers: Polymers with Tunable Mechanical Properties. Macromolecules, 2021, 54, 4649-4657.	4.8	14
152	Shape Memory Behavior of Biocompatible Polyurethane Stereoelastomers Synthesized <i>via</i> Thiol–Yne Michael Addition. Biomacromolecules, 2022, 23, 1205-1213.	5.4	14
153	Isotactic degradable polyesters derived from O-carboxyanhydrides of I-lactic and I-malic acid using a single organocatalyst/initiator system. European Polymer Journal, 2017, 95, 660-670.	5.4	13
154	pH-Responsive, Functionalizable Spyrocyclic Polycarbonate: A Versatile Platform for Biocompatible Nanoparticles. Biomacromolecules, 2018, 19, 3427-3434.	5.4	13
155	Using Stereochemistry to Control Mechanical Properties in Thiol–Yne Clickâ€Hydrogels. Angewandte Chemie - International Edition, 2021, 60, 25856-25864.	13.8	13
156	Controlling integrin-based adhesion to a degradable electrospun fibre scaffold via SI-ATRP. Journal of Materials Chemistry B, 2016, 4, 7314-7322.	5.8	12
157	Synthesis of degradable poly(ε-caprolactone)-based graft copolymers via a "grafting-from―approach. Polymer Chemistry, 2016, 7, 7126-7134.	3.9	12
158	Application of Modified Amino Acid-Derived Diols as Chain Extenders in the Synthesis of Novel Thermoplastic Polyester–Urethane Elastomers. ACS Sustainable Chemistry and Engineering, 2017, 5, 6902-6909.	6.7	12
159	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie, 2017, 129, 9306-9310.	2.0	12
160	Intrinsically Re-curable Photopolymers Containing Dynamic Thiol-Michael Bonds. Journal of the American Chemical Society, 2022, 144, 11729-11735.	13.7	12
161	Facile synthesis of reversibly crosslinked poly(ionic liquid)-type gels: Recyclable supports for organocatalysis by N-heterocyclic carbenes. European Polymer Journal, 2018, 107, 82-88.	5.4	11
162	Organische PhotosÃ u ren―und Photobasenbildner für Polymerisationen: Jüngste Fortschritte und Herausforderungen. Angewandte Chemie, 2019, 131, 10518-10531.	2.0	11

#	Article	IF	CITATIONS
163	Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels. Chemistry of Materials, 2021, 33, 7194-7202.	6.7	11
164	Catalytically Active <i>N</i> â€Heterocyclic Carbene Release from Singleâ€Chain Nanoparticles Following a Thermolysisâ€Driven Unfolding Strategy. Macromolecular Rapid Communications, 2019, 40, e1900071.	3.9	10
165	Precise Tuning of Polymeric Fiber Dimensions to Enhance the Mechanical Properties of Alginate Hydrogel Matrices. Polymers, 2021, 13, 2202.	4.5	10
166	Metal-Free Catalysis in Ring-Opening Polymerization. , 0, , 357-378.		9
167	Unlocking the Potential of Poly(<i>Ortho</i> Ester)s: A General Catalytic Approach to the Synthesis of Surfaceâ€Erodible Materials. Angewandte Chemie, 2017, 129, 16891-16895.	2.0	9
168	Tunable Thermoplastic Poly(ester–urethane)s Based on Modified Serinol Extenders. Macromolecules, 2016, 49, 2518-2525.	4.8	8
169	Application of functional diols derived from pentaerythritol as chain extenders in the synthesis of novel thermoplastic polyester-urethane elastomers. Polymer Chemistry, 2019, 10, 5236-5241.	3.9	8
170	Organocatalytic Synthesis of Alkyneâ€Functional Aliphatic Polycarbonates via Ringâ€Opening Polymerization of an Eightâ€Memberedâ€ <i>N</i> â€Cyclic Carbonate. Macromolecular Rapid Communications, 2021, 42, e2000378.	3.9	8
171	Uniform antibacterial cylindrical nanoparticles for enhancing the strength of nanocomposite hydrogels. Journal of Polymer Science, 2023, 61, 44-55.	3.8	8
172	Synthesis of poly(ω-pentadecalactone)- <i>b</i> -poly(acrylate) diblock copolymers via a combination of enzymatic ring-opening and RAFT polymerization techniques. Journal of Polymer Science Part A, 2016, 54, 3326-3335.	2.3	7
173	Polylactide thermosets using a bis(cyclic diester) crosslinker. European Polymer Journal, 2019, 120, 109192.	5.4	7
174	Customized Fading Scaffolds: Strong Polyorthoester Networks via Thiol–Ene Cross-linking for Cytocompatible Surface-Eroding Materials in 3D Printing. Biomacromolecules, 2021, 22, 1472-1483.	5.4	7
175	Additiveâ€Free Green Lightâ€Induced Ligation Using BODIPY Triggers. Angewandte Chemie, 2020, 132, 2304-2308.	2.0	6
176	Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers. Polymer Chemistry, 2021, 12, 105-112.	3.9	6
177	Controlling the crystallinity and solubility of functional PCL with efficient post-polymerisation modification. Polymer Chemistry, 2021, 12, 1983-1990.	3.9	6
178	Independent Control of Elastomer Properties through Stereocontrolled Synthesis. Angewandte Chemie, 2016, 128, 13270-13274.	2.0	5
179	Self-catalysed folding of single chain nanoparticles (SCNPs) by NHC-mediated intramolecular benzoin condensation. Polymer Chemistry, 2019, 10, 2282-2289.	3.9	5
180	Thermally-induced hyperbranching of bromine-containing polyesters by insertion of <i>in situ</i> generated chain-end carbenes. Chemical Communications, 2021, 57, 4275-4278.	4.1	4

#	Article	IF	CITATIONS
181	Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl) Tj ETQq1 1 0.78431	.4.gBT /	Overlock 10
182	Packing Posets in the Boolean Lattice. Order, 2015, 32, 429-438.	0.5	3
183	Understanding structure–property relationships of main chain cyclopropane in linear polyesters. Polymer Chemistry, 2020, 11, 6251-6258.	3.9	3
184	Harnessing polymers near equilibrium for better recycling. CheM, 2021, 7, 547-549.	11.7	3
185	Methanolysis of Poly(lactic Acid) Using Catalyst Mixtures and the Kinetics of Methyl Lactate Production. Polymers, 2022, 14, 1763.	4.5	3
186	On like a light. Nature Catalysis, 2018, 1, 486-487.	34.4	2
187	Synthesis of Monodisperse Cylindrical Nanoparticles via Crystallization-driven Self-assembly of Biodegradable Block Copolymers. Journal of Visualized Experiments, 2019, , .	0.3	2
188	LondonTube. , 2016, , .		2
189	Support for learning while debugging in a distributed visual programming language. , 2017, , .		1
190	Using an object-oriented database as a repository for process configuration data. ISA Transactions, 1997, 36, 339-343.	5.7	0
191	Emerging investigators. Polymer Chemistry, 2011, 2, 269.	3.9	0
192	Successful visual and end-user programming systems from industry. , 2011, , .		0
193	Using Stereochemistry to Control Mechanical Properties in Thiol–Yne Clickâ€Hydrogels. Angewandte Chemie, 2021, 133, 26060-26068.	2.0	0
194	Special Issue in: Organocatalyzed polymerizations. European Polymer Journal, 2017, 95, 625-627.	5.4	0
195	Organic Catalysis Outlook: Roadmap for the Future. RSC Polymer Chemistry Series, 2018, , 634-640.	0.2	0
196	Organocatalysis for Depolymerisation. RSC Polymer Chemistry Series, 2018, , 607-633.	0.2	0
197	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie, 2022, 134, .	2.0	0