Jongwon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1537178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Oxygen Electroreduction on Gold Surfaces in Basic Media. Journal of Physical Chemistry B, 2006, 110, 2565-2571.	2.6	119
2	Electroless Pt Deposition on Mn ₃ O ₄ Nanoparticles <i>via</i> the Galvanic Replacement Process: Electrocatalytic Nanocomposite with Enhanced Performance for Oxygen Reduction Reaction. ACS Nano, 2012, 6, 5122-5129.	14.6	100
3	Surfactantâ€Free Platinumâ€onâ€Gold Nanodendrites with Enhanced Catalytic Performance for Oxygen Reduction. Angewandte Chemie - International Edition, 2011, 50, 745-748.	13.8	97
4	Simple Electrochemical Deposition of Au Nanoplates from Au(I) Cyanide Complexes and Their Electrocatalytic Activities. ACS Applied Materials & amp; Interfaces, 2011, 3, 441-446.	8.0	71
5	Electrooxidation of Glucose at Nanoporous Gold Surfaces: Structure Dependent Electrocatalysis and Its Application to Amperometric Detection. Electroanalysis, 2010, 22, 939-945.	2.9	58
6	Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: Selective detection of dopamine in the presence of high concentration of ascorbic acid. Journal of Electroanalytical Chemistry, 2012, 683, 75-79.	3.8	43
7	Surface-Specific Deposition of Catalytic Metal Nanocrystals on Hollow Carbon Nanospheres <i>via</i> Galvanic Replacement Reactions of Carbon-Encapsulated MnO Nanoparticles. ACS Nano, 2014, 8, 4510-4521.	14.6	43
8	Single Gold Microshell Tailored to Sensitive Surface Enhanced Raman Scattering Probe. Analytical Chemistry, 2010, 82, 447-451.	6.5	39
9	Electrodeposition of Triangular Pd Rod Nanostructures and Their Electrocatalytic and SERS Activities. ACS Applied Materials & Interfaces, 2014, 6, 3002-3007.	8.0	38
10	Interactions between the Keggin-Type Lacunary Polyoxometalate, α-SiW11O398-, and Electrode Surfaces. Langmuir, 2003, 19, 8934-8942.	3.5	35
11	Electrochemical oxidation of glucose at nanoporous black gold surfaces in the presence of high concentration of chloride ions and application to amperometric detection. Electrochimica Acta, 2012, 80, 383-389.	5.2	34
12	Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: Origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Analytica Chimica Acta, 2013, 779, 1-7.	5.4	32
13	Electrodeposition of Nanoflake Pd Structures: Structure-Dependent Wettability and SERS Activity. ACS Applied Materials & Interfaces, 2015, 7, 7129-7135.	8.0	32
14	Effect of pH on Anodic Formation of Nanoporous Gold Films in Chloride Solutions: Optimization of Anodization for Ultrahigh Porous Structures. Langmuir, 2014, 30, 4844-4851.	3.5	27
15	Oxygen evolution reaction on Pt sphere and Ir-modified Pt sphere electrodes with porous structures. International Journal of Hydrogen Energy, 2018, 43, 2130-2138.	7.1	24
16	Formation of Ordered Multilayers from Polyoxometalates and Silver on Electrode Surfaces. Journal of Physical Chemistry B, 2004, 108, 7927-7933.	2.6	22
17	Fabrication of nanoporous Au films with ultra-high surface area for sensitive electrochemical detection of glucose in the presence of Clâ^. Applied Surface Science, 2014, 297, 84-88.	6.1	21
18	Fabrication of Supported AuPt Alloy Nanocrystals with Enhanced Electrocatalytic Activity for Formic Acid Oxidation through Conversion Chemistry of Layerâ€Đeposited Pt ²⁺ on Au Nanocrystals. Small, 2015, 11, 4884-4893.	10.0	21

Jongwon Kim

#	Article	IF	CITATIONS
19	Simple Electrodeposition of Dendritic Au Rods from Sulfiteâ€Based Au(I) Electrolytes with High Electrocatalytic and SERS Activities. Electroanalysis, 2011, 23, 2030-2035.	2.9	20
20	Pore-Engineered Silica Nanoreactors for Chemical Interaction-Guided Confined Synthesis of Porous Platinum Nanodendrites. Chemistry of Materials, 2018, 30, 3010-3018.	6.7	20
21	Insights into the Electrooxidation of Formic Acid on Pt and Pd Shells on Au Core Surfaces via SERS at Dendritic Au Rod Electrodes. Journal of Physical Chemistry C, 2013, 117, 24438-24445.	3.1	19
22	Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose. Mikrochimica Acta, 2015, 182, 849-854.	5.0	19
23	Methanol dehydrogenation reaction at Au@Pt catalysts: Insight into the methanol electrooxidation. Electrochimica Acta, 2018, 283, 11-17.	5.2	19
24	Oxygen Evolution Reaction at Microporous Pt Layers: Differentiated Electrochemical Activity between Acidic and Basic Media. Scientific Reports, 2017, 7, 15382.	3.3	18
25	Facile synthesis of Pd@Pt core–shell nanocubes with low Pt content <i>via</i> direct seed-mediated growth and their enhanced activity for formic acid oxidation. Chemical Communications, 2019, 55, 11952-11955.	4.1	16
26	Asymmetric silica encapsulation toward colloidal Janus nanoparticles: a concave nanoreactor for template-synthesis of an electocatalytic hollow Pt nanodendrite. Nanoscale, 2016, 8, 14593-14599.	5.6	15
27	Insights into the Electrooxidation Mechanism of Formic Acid on Pt Layers on Au Examined by Electrochemical SERS. Journal of Physical Chemistry C, 2016, 120, 24271-24278.	3.1	15
28	Galvanic synthesis of three-dimensional and hollow metallic nanostructures. Nanoscale Research Letters, 2014, 9, 2403.	5.7	14
29	Carbon thin-layer-coated manganese oxide nanocrystals as an effective support for high-performance Pt electrocatalysts stabilized at a metal–metal oxide–carbon triple junction. Journal of Materials Chemistry A, 2017, 5, 22341-22351.	10.3	13
30	Adsorption Properties of Keggin-type Polyoxometalates on Carbon Based Electrode Surfaces and Their Electrocatalytic Activities. Bulletin of the Korean Chemical Society, 2009, 30, 810-816.	1.9	13
31	Electrodeposition of Pt nanostructures with reproducible SERS activity and superhydrophobicity. Physical Chemistry Chemical Physics, 2015, 17, 23547-23553.	2.8	12
32	Electrochemical Deposition of Flat Nanoporous Pt Layers with Small Pore Dimensions. Electrochimica Acta, 2016, 189, 196-204.	5.2	12
33	Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces. Bulletin of the Korean Chemical Society, 2010, 31, 3407-3410.	1.9	11
34	Oxygen Evolution Reaction on Nanoporous Gold Modified with Ir and Pt: Synergistic Electrocatalysis between Structure and Composition. Electroanalysis, 2019, 31, 1026-1033.	2.9	10
35	Electrocatalysis of Peroxide Reduction by Au-Stabilized, Fe-Containing Poly(vinylpyridine) Films. Journal of Physical Chemistry B, 2005, 109, 9684-9690.	2.6	9
36	Synthesis and Electrochemical Properties of Calix[4]arene-triester-monoquinones. Supramolecular Chemistry, 1998, 9, 221-229.	1.2	8

Jongwon Kim

#	Article	IF	CITATIONS
37	Atomic Layer Electrodeposition of Pt on Nanoporous Au and its Application in pH Sensing. Electroanalysis, 2018, 30, 2028-2034.	2.9	7
38	Potentiometric Response of a Neutral-carrier-based Membrane to Aqueous Mercury in Clrich Media. Analytical Sciences, 2009, 25, 567-570.	1.6	6
39	Evaluation of Nanoporous Gold with Controlled Surface Structures for Laser Desorption Ionization (LDI) Analysis: Surface Area Versus LDI Signal Intensity. Journal of the American Society for Mass Spectrometry, 2012, 23, 1450-1453.	2.8	6
40	Effect of Temperature and Chloride Concentration on the Anodic Formation of Nanoporous Gold Films in Chloride Solutions. Bulletin of the Korean Chemical Society, 2015, 36, 2337-2343.	1.9	5
41	Electron transfer behavior at polyoxometalate-adsorbed alkanethiol self-assembled monolayers. Applied Surface Science, 2011, 257, 9490-9497.	6.1	4
42	Effect of Anionic Electrolytes and Precursor Concentrations on the Electrodeposited Pt Structures. Electroanalysis, 2017, 29, 387-391.	2.9	4
43	Heterogeneous Electron Transfer at Polyoxometalate-modified Electrode Surfaces. Bulletin of the Korean Chemical Society, 2010, 31, 104-111.	1.9	4
44	Effect of Electrochemical Oxidation-Reduction Cycles on Surface Structures and Electrocatalytic Oxygen Reduction Activity of Au Electrodes. Journal of the Korean Chemical Society, 2016, 60, 310-316.	0.2	4
45	Simple Fabrication of Porous Gold-Film Electrodes and Their Electroanalytical Applications. Analytical Sciences, 2010, 26, 129-132.	1.6	3
46	Reversible adsorption change of 2â€aminoâ€4,5â€imidazoledicarbonitrile on Ag electrode surfaces by potentialâ€dependent surfaceâ€enhanced Raman scattering. Surface and Interface Analysis, 2011, 43, 757-762.	1.8	2
47	Electrochemical and spectroscopic studies on redox-switching behavior of quinone-derivatized supramolecules. Current Applied Physics, 2009, 9, e256-e258.	2.4	1
48	Three-dimensional assembly of flower-like Au structures: the synergistic effect of macroporous structures and surface nanoarchitectures on electrocatalysis and electroanalysis. Journal of Solid State Electrochemistry, 2012, 16, 2777-2781.	2.5	1
49	Single Potential Scan Methods for Nanoporous Gold Formation on Ultramicroelectrode Surfaces. Electroanalysis, 2021, 33, 1277-1282.	2.9	1
50	In-Situ Generation of Nanostructured Au Surfaces by Anodic Dissolution Followed by Cathodic Deposition. Journal of the Korean Electrochemical Society, 2015, 18, 107-114.	0.1	1
51	Protons are One of the Limiting Factors in Determining Sensitivity of Nano Surface-Assisted (+)-Mode LDI MS Analyses. Journal of the American Society for Mass Spectrometry, 2013, 24, 1489-1492.	2.8	0
52	Tip-Induced Modification of Polyoxometalate-Dodecane Thiol Self-Assembled Monolayers on Au(111) during Scanning Tunneling Microscopy Imaging. Bulletin of the Korean Chemical Society, 2012, 33, 3139-3141.	1.9	0
53	Electrochemical Oxidation of Glucose at Nanoporous Gold Surfaces Prepared by Anodization in Carboxylic Acid Solutions. Journal of the Korean Electrochemical Society, 2013, 16, 74-80.	0.1	0