
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1536793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microglia form satellites with different neuronal subtypes in the adult murine central nervous system. Journal of Neuroscience Research, 2022, 100, 1105-1122.	1.3	2
2	Microglia/macrophage-derived human CCL18 promotes glioma progression via CCR8-ACP5 axis analyzed in humanized slice model. Cell Reports, 2022, 39, 110670.	2.9	18
3	Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain, Behavior, and Immunity, 2021, 91, 89-104.	2.0	13
4	Glial cell lineâ€derived neurotrophic factor increases matrix metallopeptidase 9 and 14 expression in microglia and promotes microgliaâ€mediated glioma progression. Journal of Neuroscience Research, 2021, 99, 1048-1063.	1.3	9
5	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
6	Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia, 2021, 69, 2291-2304.	2.5	11
7	UNC93B1 Is Widely Expressed in the Murine CNS and Is Required for Neuroinflammation and Neuronal Injury Induced by MicroRNA let-7b. Frontiers in Immunology, 2021, 12, 715774.	2.2	4
8	Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites. Cell Reports, 2021, 34, 108642.	2.9	27
9	Microglia sense neuronal activity via GABA in the early postnatal hippocampus. Cell Reports, 2021, 37, 110128.	2.9	30
10	Neurofibromatosis 1 - Mutant microglia exhibit sexually-dimorphic cyclic AMP-dependent purinergic defects. Neurobiology of Disease, 2020, 144, 105030.	2.1	10
11	Neuroinflammatory alterations in trait anxiety: modulatory effects of minocycline. Translational Psychiatry, 2020, 10, 256.	2.4	39
12	Down-regulation of Aquaporin-1 mediates a microglial phenotype switch affecting glioma growth. Experimental Cell Research, 2020, 396, 112323.	1.2	7
13	Activation of Toll-like receptor 5 in microglia modulates their function and triggers neuronal injury. Acta Neuropathologica Communications, 2020, 8, 159.	2.4	26
14	Tumour-derived CSF2/granulocyte macrophage colony stimulating factor controls myeloid cell accumulation and progression of gliomas. British Journal of Cancer, 2020, 123, 438-448.	2.9	28
15	Synergistic Toll-like Receptor 3/9 Signaling Affects Properties and Impairs Glioma-Promoting Activity of Microglia. Journal of Neuroscience, 2020, 40, 6428-6443.	1.7	23
16	Studying Human Glial Cells: Where Are We Today?. Glia, 2020, 68, 683-684.	2.5	1
17	The VGF-derived Peptide TLQP21 Impairs Purinergic Control of Chemotaxis and Phagocytosis in Mouse Microglia. Journal of Neuroscience, 2020, 40, 3320-3331.	1.7	20
18	O-Vanillin Attenuates the TLR2 Mediated Tumor-Promoting Phenotype of Microglia. International Journal of Molecular Sciences, 2020, 21, 2959.	1.8	15

#	Article	IF	CITATIONS
19	Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1. Brain, Behavior, and Immunity, 2019, 81, 470-483.	2.0	36
20	Cien Años de MicroglÃa: Milestones in a Century of Microglial Research. Trends in Neurosciences, 2019, 42, 778-792.	4.2	131
21	Microglia/Brain Macrophages as Central Drivers of Brain Tumor Pathobiology. Neuron, 2019, 104, 442-449.	3.8	190
22	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncolmmunology, 2019, 8, e1655360.	2.1	76
23	Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathologica Communications, 2019, 7, 20.	2.4	124
24	let-7 MicroRNAs Regulate Microglial Function and Suppress Glioma Growth through Toll-Like Receptor 7. Cell Reports, 2019, 29, 3460-3471.e7.	2.9	64
25	Oligodendrocytes in the Mouse Corpus Callosum Maintain Axonal Function by Delivery of Glucose. Cell Reports, 2018, 22, 2383-2394.	2.9	111
26	Distinguishing features of microglia- and monocyte-derived macrophages after stroke. Acta Neuropathologica, 2018, 135, 551-568.	3.9	86
27	Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro-Oncology, 2018, 20, 355-366.	0.6	32
28	Transcriptional and Translational Differences of Microglia from Male and Female Brains. Cell Reports, 2018, 24, 2773-2783.e6.	2.9	311
29	Astrocytic Calcium Waves Signal Brain Injury to Neural Stem andÂProgenitorÂCells. Stem Cell Reports, 2017, 8, 701-714.	2.3	18
30	Changes in phagocytosis and potassium channel activity in microglia of 5xFAD mice indicate alterations in purinergic signaling in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2017, 58, 41-53.	1.5	44
31	Microglia in Physiology and Disease. Annual Review of Physiology, 2017, 79, 619-643.	5.6	1,011
32	Building Bridges through Science. Neuron, 2017, 96, 730-735.	3.8	2
33	Introduction: Special Issue in Honor of Bruce Ransom. Neurochemical Research, 2017, 42, 2437-2441.	1.6	0
34	The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS ONE, 2017, 12, e0175012.	1.1	57
35	FENS Forum 2018 in Berlin. E-Neuroforum, 2016, 22, 109-109.	0.2	0
36	Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron. European Journal of Neuroscience, 2016, 43, 1523-1534.	1.2	25

#	Article	IF	CITATIONS
37	Human glioblastomaâ€associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia, 2016, 64, 1416-1436.	2.5	90
38	Barreloid Borders and Neuronal Activity Shape Panglial Gap Junction-Coupled Networks in the Mouse Thalamus. Cerebral Cortex, 2016, 28, 213-222.	1.6	16
39	Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling. Journal of Neuropathology and Experimental Neurology, 2016, 75, 429-440.	0.9	60
40	Spontaneous Ca 2+ transients in mouse microglia. Cell Calcium, 2016, 60, 396-406.	1.1	27
41	TLR2 controls random motility, while TLR7 regulates chemotaxis of microglial cells via distinct pathways. Brain, Behavior, and Immunity, 2016, 58, 338-347.	2.0	27
42	Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream. Scientific Reports, 2016, 6, 32203.	1.6	9
43	The "Bigâ€Bang―for modern glial biology: Translation and comments on PÃo del RÃoâ€Hortega 1919 series of papers on microglia. Glia, 2016, 64, 1801-1840.	2.5	174
44	Glial Cells: Neuroglia. , 2016, , 547-578.		1
45	Experimental Cortical Spreading Depression Induces NMDA Receptor Dependent Potassium Currents in Microglia. Journal of Neuroscience, 2016, 36, 6165-6174.	1.7	37
46	ERK1 as a Therapeutic Target for Dendritic Cell Vaccination against High-Grade Gliomas. Molecular Cancer Therapeutics, 2016, 15, 1975-1987.	1.9	7
47	Actin dynamics shape microglia effector functions. Brain Structure and Function, 2016, 221, 2717-2734.	1.2	39
48	The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience, 2016, 19, 20-27.	7.1	1,148
49	The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer's disease. Brain Structure and Function, 2016, 221, 1157-1172.	1.2	51
50	Glioma-Associated Microglia/Macrophages Display an Expression Profile Different from M1 and M2 Polarization and Highly Express Gpnmb and Spp1. PLoS ONE, 2015, 10, e0116644.	1.1	317
51	Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro-Oncology, 2015, 17, 200-210.	0.6	131
52	Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells. Cerebral Cortex, 2015, 25, 3420-3433.	1.6	108
53	Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Molecular Neurodegeneration, 2015, 10, 5.	4.4	47
54	Vascular Signal Transducer and Activator of Transcription-3 Promotes Angiogenesis and Neuroplasticity Long-Term After Stroke. Circulation, 2015, 131, 1772-1782.	1.6	71

#	Article	IF	CITATIONS
55	Altered microglial phagocytosis in GPR34â€deficient mice. Glia, 2015, 63, 206-215.	2.5	60
56	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	0.8	154
57	Membraneâ€ŧype 1 metalloproteinase is upregulated in microglia/brain macrophages in neurodegenerative and neuroinflammatory diseases. Journal of Neuroscience Research, 2014, 92, 275-286.	1.3	29
58	The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-l³, and IL-4. Glia, 2014, 62, 667-679.	2.5	60
59	Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain, Behavior, and Immunity, 2014, 38, 175-184.	2.0	162
60	Glioma-associated microglia and macrophages/monocytes display distinct electrophysiological properties and do not communicate via gap junctions. Neuroscience Letters, 2014, 583, 130-135.	1.0	23
61	Intracellular glycine receptor function facilitates glioma formation in vivo. Journal of Cell Science, 2014, 127, 3687-98.	1.2	17
62	Gliomaâ€associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. International Journal of Cancer, 2014, 135, 2569-2578.	2.3	95
63	NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signalling, 2013, 9, 199-205.	1.1	38
64	Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro-Oncology, 2013, 15, 1457-1468.	0.6	115
65	Microglia: New Roles for the Synaptic Stripper. Neuron, 2013, 77, 10-18.	3.8	949
66	Functional Impairment of Microglia Coincides with Beta-Amyloid Deposition in Mice with Alzheimer-Like Pathology. PLoS ONE, 2013, 8, e60921.	1.1	381
67	Glial Cells. , 2013, , 475-506.		5
68	GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathologica, 2013, 125, 609-620.	3.9	97
69	Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity. Brain, Behavior, and Immunity, 2012, 26, 419-428.	2.0	153
70	Tollâ€like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Clia, 2012, 60, 1930-1943.	2.5	85
71	Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nature Medicine, 2012, 18, 1232-1238.	15.2	159
72	Panglial Gap Junctional Communication is Essential for Maintenance of Myelin in the CNS. Journal of Neuroscience, 2012, 32, 7499-7518.	1.7	113

#	Article	IF	CITATIONS
73	The brain tumor microenvironment. Glia, 2012, 60, 502-514.	2.5	624
74	Physiology of Microglia. Physiological Reviews, 2011, 91, 461-553.	13.1	2,990
75	Properties of Doublecortin-(DCX)-Expressing Cells in the Piriform Cortex Compared to the Neurogenic Dentate Gyrus of Adult Mice. PLoS ONE, 2011, 6, e25760.	1.1	121
76	Functional importance of inositolâ€1,4,5â€ŧriphosphateâ€induced intracellular Ca ²⁺ mobilization in galaninâ€induced microglial migration. Journal of Neurochemistry, 2011, 117, 61-70.	2.1	21
77	Transmitter- and hormone-activated Ca2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca2+ sensor. Cell Calcium, 2011, 49, 365-375.	1.1	59
78	The brain tumor microenvironment. Glia, 2011, 59, 1169-1180.	2.5	425
79	Pathologic and Phenotypic Alterations in a Mouse Expressing a Connexin47 Missense Mutation That Causes Pelizaeus-Merzbacher–Like Disease in Humans. PLoS Genetics, 2011, 7, e1002146.	1.5	65
80	Heterogeneity in astrocyte morphology and physiology. Brain Research Reviews, 2010, 63, 2-10.	9.1	333
81	Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia, 2010, 58, 1104-1117.	2.5	122
82	Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain, 2010, 133, 1961-1972.	3.7	90
83	Impact of Actin Filament Stabilization on Adult Hippocampal and Olfactory Bulb Neurogenesis. Journal of Neuroscience, 2010, 30, 3419-3431.	1.7	36
84	Modulation of Fate Determinants Olig2 and Pax6 in Resident Glia Evokes Spiking Neuroblasts in a Model of Mild Brain Ischemia. Stroke, 2010, 41, 2944-2949.	1.0	46
85	The principal neurons of the medial nucleus of the trapezoid body and NG2+ glial cells receive coordinated excitatory synaptic input. Journal of General Physiology, 2009, 134, 115-127.	0.9	78
86	Pharmacological "crossâ€inhibition―of connexin hemichannels and swelling activated anion channels. Glia, 2009, 57, 258-269.	2.5	102
87	C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. Journal of Neuroscience Research, 2009, 87, 644-652.	1.3	97
88	GABAergic activities enhance macrophage inflammatory proteinâ€1α release from microglia (brain) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
89	Astrocyte Function is Modified by Alzheimer's Disease-like Pathology in Aged Mice. Journal of Alzheimer's Disease, 2009, 18, 177-189.	1.2	71
	The ectonucleotidase <i>cd39</i> /FNTPDase1 modulates puripergicâ€mediated microglial migration. Clia		

⁹⁰The ectonucleotidase <i>cd39</i>/ENTPDase1 modulates purinergicâ€mediated microglial migration. Glia,
2008, 56, 331-341.2.594

#	Article	IF	CITATIONS
91	Mild brain ischemia induces unique physiological properties in striatal astrocytes. Glia, 2008, 56, 925-934.	2.5	16
92	The Antitumorigenic Response of Neural Precursors Depends on Subventricular Proliferation and Age. Stem Cells, 2008, 26, 2945-2954.	1.4	47
93	Temperature and nitric oxide control spontaneous calcium transients in astrocytes. Cell Calcium, 2008, 43, 285-295.	1.1	37
94	Store-operated Ca2+ entry in astrocytes: Different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium, 2008, 43, 591-601.	1.1	53
95	How Does Intracellular Ca2+ Oscillate: By Chance or by the Clock?. Biophysical Journal, 2008, 94, 2404-2411.	0.2	169
96	An α5β1 integrin inhibitor attenuates glioma growth. Molecular and Cellular Neurosciences, 2008, 39, 579-585.	1.0	44
97	Neuroglia: the 150 years after. Trends in Neurosciences, 2008, 31, 653-659.	4.2	243
98	Two types of astrocytic cell in the adult striatum. , 2008, , .		0
99	Astrocytes Discriminate and Selectively Respond to the Activity of a Subpopulation of Neurons within the Barrel Cortex. Cerebral Cortex, 2008, 18, 2450-2459.	1.6	73
100	Bradykinin-Induced Microglial Migration Mediated by B ₁ -Bradykinin Receptors Depends on Ca ²⁺ Influx via Reverse-Mode Activity of the Na ⁺ /Ca ²⁺ Exchanger. Journal of Neuroscience, 2007, 27, 13065-13073.	1.7	119
101	A Novel Glycine Receptor β Subunit Splice Variant Predicts an Unorthodox Transmembrane Topology. Journal of Biological Chemistry, 2007, 282, 2798-2807.	1.6	35
102	The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain, 2007, 130, 476-489.	3.7	124
103	Neurotransmitter receptors on microglia. Trends in Neurosciences, 2007, 30, 527-535.	4.2	548
104	Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 2007, 10, 1387-1394.	7.1	3,116
105	The brain's garbage men. Nature, 2007, 446, 987-989.	13.7	65
106	Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. Journal of Neurochemistry, 2007, 101, 397-410.	2.1	116
107	Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Archiv European Journal of Physiology, 2007, 454, 245-252.	1.3	120
108	Enriched Monolayer Precursor Cell Cultures from Micro-Dissected Adult Mouse Dentate Gyrus Yield Functional Granule Cell-Like Neurons. PLoS ONE, 2007, 2, e388.	1.1	127

#	Article	IF	CITATIONS
109	The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. Molecular and Cellular Neurosciences, 2006, 33, 401-411.	1.0	100
110	Graduiertenkolleg 1258 Der Einfluss von Entzündung auf die Funktion des Nervensystems. E-Neuroforum, 2006, 12, 243-245.	0.2	0
111	Triggering the brain's pathology sensor. Nature Neuroscience, 2006, 9, 1463-1464.	7.1	30
112	Purinergic signaling and microglia. Pflugers Archiv European Journal of Physiology, 2006, 452, 615-621.	1.3	163
113	Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia, 2006, 54, 805-814.	2.5	305
114	Functional role of calcium signals for microglial function. Glia, 2006, 54, 656-665.	2.5	164
115	Activity-dependent ATP-waves in the Mouse Neocortex are Independent from Astrocytic Calcium Waves. Cerebral Cortex, 2006, 16, 237-246.	1.6	131
116	A1 Adenosine Receptors in Microglia Control Glioblastoma-Host Interaction. Cancer Research, 2006, 66, 8550-8557.	0.4	75
117	Microglia Stimulate the Invasiveness of Glioma Cells by Increasing the Activity of Metalloprotease-2. Journal of Neuropathology and Experimental Neurology, 2005, 64, 754-762.	0.9	254
118	Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. Journal of Cell Science, 2005, 118, 3791-3803.	1.2	139
119	Glioblastoma-Induced Attraction of Endogenous Neural Precursor Cells Is Associated with Improved Survival. Journal of Neuroscience, 2005, 25, 2637-2646.	1.7	200
120	Nestin-Expressing Cells Divide and Adopt a Complex Electrophysiologic Phenotype after Transient Brain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1613-1624.	2.4	42
121	Dopamine and noradrenaline control distinct functions in rodent microglial cells. Molecular and Cellular Neurosciences, 2005, 29, 128-138.	1.0	192
122	A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Molecular and Cellular Neurosciences, 2005, 29, 181-189.	1.0	159
123	Physiology of microglial cells. Brain Research Reviews, 2005, 48, 133-143.	9.1	163
124	Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. American Journal of Physiology - Cell Physiology, 2004, 286, C129-C137.	2.1	244
125	CXCR3-Dependent Microglial Recruitment Is Essential for Dendrite Loss after Brain Lesion. Journal of Neuroscience, 2004, 24, 8500-8509.	1.7	245
126	The Microglia-activating Potential of Thrombin. Journal of Biological Chemistry, 2004, 279, 51880-51887.	1.6	50

#	Article	IF	CITATIONS
127	The tyrosine kinase inhibitor AG126 restores receptor signaling and blocks release functions in activated microglia (brain macrophages) by preventing a chronic rise in the intracellular calcium level. Journal of Neurochemistry, 2004, 90, 513-525.	2.1	18
128	Microglia express GABA B receptors to modulate interleukin release. Molecular and Cellular Neurosciences, 2004, 25, 312-322.	1.0	174
129	GABAA receptor-expressing astrocytes in the supraoptic nucleus lack glutamate uptake and receptor currents. Glia, 2003, 44, 102-110.	2.5	48
130	Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activationin vitro. European Journal of Neuroscience, 2003, 17, 2267-2276.	1.2	196
131	Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Molecular and Cellular Neurosciences, 2003, 23, 373-382.	1.0	435
132	Elevation of Basal Intracellular Calcium as a Central Element in the Activation of Brain Macrophages (Microglia): Suppression of Receptor-Evoked Calcium Signaling and Control of Release Function. Journal of Neuroscience, 2003, 23, 4410-4419.	1.7	229
133	Different Mechanisms Promote Astrocyte Ca ²⁺ Waves and Spreading Depression in the Mouse Neocortex. Journal of Neuroscience, 2003, 23, 9888-9896.	1.7	183
134	Segregated Expression of AMPA-Type Glutamate Receptors and Glutamate Transporters Defines Distinct Astrocyte Populations in the Mouse Hippocampus. Journal of Neuroscience, 2003, 23, 1750-1758.	1.7	400
135	Secondary Lymphoid Tissue Chemokine (CCL21) Activates CXCR3 to Trigger a Clâ^' Current and Chemotaxis in Murine Microglia. Journal of Immunology, 2002, 168, 3221-3226.	0.4	138
136	Astrocyte Ca 2+ waves trigger responses in microglial cells in brain slices. FASEB Journal, 2002, 16, 1-16.	0.2	216
137	Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. Journal of Neuroscience Research, 2002, 68, 138-149.	1.3	150
138	Phagocytic Clearance of Apoptotic Neurons by Microglia/Brain Macrophages In Vitro. Journal of Neurochemistry, 2002, 75, 1060-1070.	2.1	171
139	Interferon-Î ³ differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. European Journal of Neuroscience, 2002, 16, 2113-2122.	1.2	111
140	Nitric Oxide Signals Parallel Fiber Activity to Bergmann Glial Cells in the Mouse Cerebellar Slice. Molecular and Cellular Neurosciences, 2001, 18, 664-670.	1.0	69
141	GABAA-receptor expression in glioma cells is triggered by contact with neuronal cells. European Journal of Neuroscience, 2001, 14, 1294-1302.	1.2	27
142	AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: Isolation, differentiation, and association with radial glia. Glia, 2001, 34, 213-228.	2.5	118
143	GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 2001, 33, 72-86.	2.5	488
144	The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls. European Journal of Immunology, 2001, 31, 2104-2115.	1.6	74

#	Article	IF	CITATIONS
145	β-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia11Published on the World Wide Web on 30 March 2001 Brain Research, 2001, 899, 264-270.	1.1	41
146	Astrocytes of the mouse neocortex express functional Nâ€methylâ€Dâ€aspartate receptors. FASEB Journal, 2001, 15, 1270-1272.	0.2	182
147	Hypoxia reverses dibutyrylâ€cAMPâ€induced stellation of cultured astrocytes via activation of the endothelin system. FASEB Journal, 2001, 15, 1227-1229.	0.2	9
148	GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. , 2001, 33, 72.		2
149	GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. , 2001, 33, 72.		12
150	Biochemical analysis of proteasomes from mouse microglia: Induction of immunoproteasomes by interferon-? and lipopolysaccharide. Glia, 2000, 29, 355-365.	2.5	71
151	Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. European Journal of Neuroscience, 2000, 12, 2049-2058.	1.2	139
152	Distinct Physiologic Properties of Microglia and Blood-Borne Cells in Rat Brain Slices After Permanent Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1537-1549.	2.4	65
153	Activation of mouse microglial cells affects P2 receptor signaling. Brain Research, 2000, 853, 49-59.	1.1	116
154	Regionally Distinct Regulation of Astroglial Neurotransmitter Receptors by Fibroblast Growth Factor-2. Molecular and Cellular Neurosciences, 2000, 16, 42-58.	1.0	29
155	Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nature Neuroscience, 1999, 2, 139-143.	7.1	612
156	Microglial Activation by Components of Gram-Positive and -Negative Bacteria: Distinct and Common Routes to the Induction of Ion Channels and Cytokines. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1078-1089.	0.9	95
157	Oligodendrocytes and Microglia Are Selectively Vulnerable to Combined Hypoxia and Hypoglycemia Injury in Vitro. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 521-530.	2.4	121
158	Dye coupling between spinal cord oligodendrocytes: Differences in coupling efficiency between gray and white matter. , 1998, 24, 108-120.		57
159	Glial Calcium: Homeostasis and Signaling Function. Physiological Reviews, 1998, 78, 99-141.	13.1	637
160	Dye coupling between spinal cord oligodendrocytes: Differences in coupling efficiency between gray and white matter. , 1998, 24, 108.		2
161	Mouse Brain Microglia Express Interleukin-15 and Its Multimeric Receptor Complex Functionally Coupled to Janus Kinase Activity. Journal of Biological Chemistry, 1997, 272, 28853-28860.	1.6	95
162	Microglial phagocytosis is modulated by pro-and anti-inflammatory cytokines. NeuroReport, 1997, 8, 3851-3856.	0.6	80

#	Article	IF	CITATIONS
163	Action Potential-generating Cells in Human Glioblastomas. Journal of Neuropathology and Experimental Neurology, 1997, 56, 243-254.	0.9	59
164	Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. NeuroReport, 1997, 8, 2127-2131.	0.6	34
165	Mechanisms of C5a and C3a Complement Fragment-Induced [Ca ²⁺] _i Signaling in Mouse Microglia. Journal of Neuroscience, 1997, 17, 615-624.	1.7	138
166	Epidermal Growth Factor is a Motility Factor for Microglial CellsIn Vitro:Evidence for EGF Receptor Expression. European Journal of Neuroscience, 1997, 9, 1690-1698.	1.2	83
167	Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals. Cell Calcium, 1997, 21, 409-419.	1.1	46
168	Calcium signalling in glial cells. Trends in Neurosciences, 1996, 19, 346-352.	4.2	474
169	Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. , 1996, 17, 274-284.		95
170	Expression of Glycine Receptor Subunits in Glial Cells of the Rat Spinal Cord. Journal of Neurochemistry, 1996, 66, 1383-1390.	2.1	65
171	Glycine- and GABA-activated Currents in Identified Glial Cells of the Developing Rat Spinal Cord Slice. European Journal of Neuroscience, 1995, 7, 1188-1198.	1.2	86
172	Distinct Populations of Identified Glial Cells in the Developing Rat Spinal Cord Slice: Ion Channel Properties and Cell Morphology. European Journal of Neuroscience, 1995, 7, 129-142.	1.2	102
173	Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus, 1994, 4, 19-35.	0.9	154
174	NMDA-activated currents in Bergmann glial cells. NeuroReport, 1993, 4, 671-674.	0.6	89
175	Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia, 1988, 1, 64-73.	2.5	175