List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1536482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bulk Production of a New Form of sp ² Carbon: Crystalline Graphene Nanoribbons. Nano Letters, 2008, 8, 2773-2778.	4.5	588
2	Doubleâ^'Step Gas Sorption of a Twoâ^'Dimensional Metalâ^'Organic Framework. Journal of the American Chemical Society, 2007, 129, 12362-12363.	6.6	189
3	Control over Hierarchy Levels in the Self-Assembly of Stackable Nanotoroids. Journal of the American Chemical Society, 2012, 134, 18205-18208.	6.6	143
4	Affinity Transformation from Hydrophilicity to Hydrophobicity of Water Molecules on the Basis of Adsorption of Water in Graphitic Nanopores. Journal of the American Chemical Society, 2004, 126, 1560-1562.	6.6	138
5	Cadmium(II) adsorption using functional mesoporous silica and activated carbon. Journal of Hazardous Materials, 2012, 221-222, 220-227.	6.5	119
6	Super Flexibility of a 2D Cu-Based Porous Coordination Framework on Gas Adsorption in Comparison with a 3D Framework of Identical Composition: Framework Dimensionality-Dependent Gas Adsorptivities. Journal of the American Chemical Society, 2011, 133, 10512-10522.	6.6	112
7	Light-induced unfolding and refolding of supramolecular polymer nanofibres. Nature Communications, 2017, 8, 15254.	5.8	105
8	Elastic layer-structured metal organic frameworks (ELMs). Journal of Colloid and Interface Science, 2009, 334, 1-7.	5.0	104
9	Internal Surface Area Evaluation of Carbon Nanotube with GCMC Simulation-Assisted N2 Adsorption. Journal of Physical Chemistry B, 2002, 106, 7171-7176.	1.2	101
10	Morphology and Crystallography of Sub-Blocks in Ultra-Low Carbon Lath Martensite Steel. Materials Transactions, 2009, 50, 1919-1923.	0.4	100
11	Synthesis, Structural Transformation, Thermal Stability, Valence State, and Magnetic and Electronic Properties of PbNiO ₃ with Perovskite- and LiNbO ₃ -Type Structures. Journal of the American Chemical Society, 2011, 133, 16920-16929.	6.6	99
12	Quantum Sieving Effect of Three-Dimensional Cu-Based Organic Framework for H ₂ and D ₂ . Journal of the American Chemical Society, 2008, 130, 6367-6372.	6.6	94
13	Photoreactive helical nanoaggregates exhibiting morphology transition on thermal reconstruction. Nature Communications, 2015, 6, 8936.	5.8	91
14	Reversible Structural Change of Cu-MOF on Exposure to Water and Its CO ₂ Adsorptivity. Langmuir, 2009, 25, 4510-4513.	1.6	90
15	Confinement in Carbon Nanospace-Induced Production of KI Nanocrystals of High-Pressure Phase. Journal of the American Chemical Society, 2011, 133, 10344-10347.	6.6	86
16	Self-folding of supramolecular polymers into bioinspired topology. Science Advances, 2018, 4, eaat8466.	4.7	78
17	Cluster-Growth-Induced Water Adsorption in Hydrophobic Carbon Nanopores. Journal of Physical Chemistry B, 2004, 108, 14964-14969.	1.2	72
18	N2 Adsorption in an Internal Nanopore Space of Single-Walled Carbon Nanohorn:  GCMC Simulation and Experiment. Nano Letters, 2001, 1, 371-373.	4.5	70

#	Article	IF	CITATIONS
19	Equilibration-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons. Carbon, 2010, 48, 305-308.	5.4	69
20	Metalâ€Ionâ€Dependent Gas Sorptivity of Elastic Layerâ€Structured MOFs. Chemistry - A European Journal, 2009, 15, 7549-7553.	1.7	68
21	Structures and Stability of Water Nanoclusters in Hydrophobic Nanospaces. Nano Letters, 2005, 5, 227-230.	4.5	67
22	Marked Adsorption Irreversibility of Graphitic Nanoribbons for CO ₂ and H ₂ O. Journal of the American Chemical Society, 2011, 133, 14880-14883.	6.6	62
23	Water Cluster Growth in Hydrophobic Solid Nanospaces. Chemistry - A European Journal, 2005, 11, 4890-4894.	1.7	60
24	Tuning of Gate Opening of an Elastic Layered Structure MOF in CO ₂ Sorption with a Trace of Alcohol Molecules. Langmuir, 2011, 27, 6905-6909.	1.6	54
25	Carbon materials with controlled edge structures. Carbon, 2017, 122, 694-701.	5.4	54
26	Surface Oxygen-Dependent Water Cluster Growth in Carbon Nanospaces with GCMC Simulation-Aided in Situ SAXS. Journal of Physical Chemistry C, 2007, 111, 6207-6214.	1.5	52
27	Sizeâ€Dependent Water Structures in Carbon Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 8032-8036.	7.2	51
28	Efficient H2Adsorption by Nanopores of High-Purity Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 12636-12637.	6.6	50
29	A Highly Viscous Imidazolium Ionic Liquid inside Carbon Nanotubes. Journal of Physical Chemistry B, 2014, 118, 6234-6240.	1.2	50
30	Effect of a Quaternary Ammonium Salt on Propylene Carbonate Structure in Slit-Shape Carbon Nanopores. Journal of the American Chemical Society, 2010, 132, 2112-2113.	6.6	49
31	Kinetically Forbidden Transformations of Water Molecular Assemblies in Hydrophobic Micropores. Langmuir, 2011, 27, 7609-7613.	1.6	46
32	High-Pressure Synthesis, Structure, and Characterization of a Post-perovskite CaPtO ₃ with CalrO ₃ -Type Structure. Inorganic Chemistry, 2008, 47, 1868-1870.	1.9	45
33	Gas Adsorption Mechanism and Kinetics of an Elastic Layer-Structured Metal–Organic Framework. Journal of Physical Chemistry C, 2012, 116, 4157-4162.	1.5	44
34	Incarceration of (PdO) _{<i>n</i>} and Pd _{<i>n</i>} Clusters by Cageâ€Templated Synthesis of Hollow Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5893-5896.	7.2	43
35	Cluster-associated filling of water molecules in slit-shaped graphitic nanopores. Molecular Physics, 2007, 105, 139-145.	0.8	42
36	Evidence of Dynamic Pentagonâ^'Heptagon Pairs in Single-Wall Carbon Nanotubes using Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2010, 132, 6764-6767.	6.6	41

#	Article	IF	CITATIONS
37	Adsorption of water on three-dimensional pillared-layer metal organic frameworks. Journal of Colloid and Interface Science, 2007, 314, 422-426.	5.0	40
38	Rapid Water Transportation through Narrow One-Dimensional Channels by Restricted Hydrogen Bonds. Langmuir, 2013, 29, 1077-1082.	1.6	40
39	Dynamic Changes in Dimensional Structures of Co-Complex Crystals. Inorganic Chemistry, 2010, 49, 9247-9252.	1.9	37
40	Enhancement of H2 and CH4 adsorptivities of single wall carbon nanotubes produced by mixed acid treatment. Carbon, 2008, 46, 611-617.	5.4	36
41	Enhanced Hydrogen Adsorptivity of Single-Wall Carbon Nanotube Bundles by One-Step C ₆₀ -Pillaring Method. Nano Letters, 2009, 9, 3694-3698.	4.5	35
42	Intensive Edge Effects of Nanographenes in Molecular Adsorptions. Journal of Physical Chemistry Letters, 2012, 3, 511-516.	2.1	35
43	Cooperative CO ₂ adsorption promotes high CO ₂ adsorption density over wide optimal nanopore range. Adsorption Science and Technology, 2018, 36, 625-639.	1.5	35
44	One-shot preparation of topologically chimeric nanofibers via a gradient supramolecular copolymerization. Nature Communications, 2019, 10, 4578.	5.8	35
45	Water-induced self-assembly of an amphiphilic perylene bisimide dyad into vesicles, fibers, coils, and rings. Materials Chemistry Frontiers, 2018, 2, 171-179.	3.2	34
46	Anomaly of CH ₄ Molecular Assembly Confined in Single-Wall Carbon Nanohorn Spaces. Journal of the American Chemical Society, 2011, 133, 2022-2024.	6.6	33
47	Significant Hydration Shell Formation Instead of Hydrogen Bonds in Nanoconfined Aqueous Electrolyte Solutions. Journal of the American Chemical Society, 2012, 134, 17850-17853.	6.6	33
48	Competition of Desolvation and Stabilization of Organic Electrolytes in Extremely Narrow Nanopores. Journal of Physical Chemistry C, 2013, 117, 17092-17098.	1.5	33
49	Kinetics and Structural Changes in CO ₂ Capture of K ₂ CO ₃ under a Moist Condition. Energy & Fuels, 2015, 29, 4472-4478.	2.5	32
50	Quantum Molecular Sieving Effects of H ₂ and D ₂ on Bundled and Nonbundled Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 20918-20922.	1.5	31
51	Covalent Modular Approach for Dimension ontrolled Selfâ€Organization of Perylene Bisimide Dyes. Chemistry - A European Journal, 2013, 19, 6561-6565.	1.7	31
52	GCMC Study on Relationship between DR Plot and Micropore Width Distribution of Carbon. Langmuir, 2001, 17, 3666-3670.	1.6	30
53	Double-Step Gate Phenomenon in CO ₂ Sorption of an Elastic Layer-Structured MOF. Langmuir, 2016, 32, 9722-9726.	1.6	29
54	Water-induced helical supramolecular polymerization and gel formation of an alkylene-tethered perylene bisimide dyad. Chemical Communications, 2017, 53, 168-171.	2.2	29

#	Article	IF	CITATIONS
55	Preformed monolayer-induced filling of molecules in micropores. Chemical Physics Letters, 2000, 326, 158-162.	1.2	27
56	Novel Nanostructures of Porous Carbon Synthesized with Zeolite LTA-Template and Methanol. Journal of Physical Chemistry C, 2007, 111, 2459-2464.	1.5	27
57	Fine Nanostructure Analysis of Single-Wall Carbon Nanohorns by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2008, 112, 7552-7556.	1.5	27
58	The Thinnest Molecular Separation Sheet by Graphene Gates of Single-Walled Carbon Nanohorns. ACS Nano, 2014, 8, 11313-11319.	7.3	27
59	Nanoscale Curvature Effect on Ordering of N ₂ Molecules Adsorbed on Single Wall Carbon Nanotube. Journal of Physical Chemistry C, 2007, 111, 15660-15663.	1.5	26
60	Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number. Carbon, 2013, 61, 40-46.	5.4	26
61	Cluster Structures of Supercritical CH4Confined in Carbon Nanospaces with in Situ High-Pressure Small-Angle X-ray Scattering and Grand Canonical Monte Carlo Simulation. Journal of Physical Chemistry B, 2004, 108, 27-30.	1.2	25
62	Diverse structures and adsorption properties of quasi-Werner-type copper(ii) complexes with flexible and polar axial bonds. Dalton Transactions, 2011, 40, 2268.	1.6	25
63	Vertically Oriented Propylene Carbonate Molecules and Tetraethyl Ammonium Ions in Carbon Slit Pores. Journal of Physical Chemistry C, 2013, 117, 5752-5757.	1.5	25
64	Temperature Dependence of Micropore Filling of N2in Slit-Shaped Carbon Micropores:Â Experiment and Grand Canonical Monte Carlo Simulation. Langmuir, 2003, 19, 5700-5707.	1.6	24
65	Quasi One-Dimensional Nanopores in Single-Wall Carbon Nanohorn Colloids Using Grand Canonical Monte Carlo Simulation Aided Adsorption Technique. Journal of Physical Chemistry B, 2005, 109, 8659-8662.	1.2	23
66	Unique Hydrogen-Bonded Structure of Water around Ca Ions Confined in Carbon Slit Pores. Journal of Physical Chemistry C, 2009, 113, 12622-12624.	1.5	23
67	Superuniform Molecular Nanogate Fabrication on Graphene Sheets of Single Wall Carbon Nanohorns for Selective Molecular Separation of CO2 and CH4. Chemistry Letters, 2011, 40, 1089-1091.	0.7	23
68	Nanocrystallization of Imidazolium Ionic Liquid in Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 28424-28429.	1.5	22
69	Changing Water Affinity from Hydrophobic to Hydrophilic in Hydrophobic Channels. Langmuir, 2015, 31, 1058-1063.	1.6	22
70	Relationship between DR-plot and micropore width distribution from GCMC simulation. Carbon, 2000, 38, 1892-1896.	5.4	21
71	Selective D ₂ adsorption enhanced by the quantum sieving effect on entangled single-wall carbon nanotubes. Journal of Physics Condensed Matter, 2010, 22, 334207.	0.7	21
72	A pulsed neutron diffraction study of the topological defects presence in carbon nanohorns. Chemical Physics Letters, 2011, 502, 87-91.	1.2	21

#	Article	IF	CITATIONS
73	Influence of surface functionalities on ethanol adsorption characteristics in activated carbons for adsorption heat pumps. Applied Thermal Engineering, 2014, 72, 160-165.	3.0	21
74	Wide Carbon Nanopores as Efficient Sites for the Separation of SF6 from N2. Scientific Reports, 2015, 5, 11994.	1.6	21
75	Supramolecular Polymerization of Supermacrocycles: Effect of Molecular Conformations on Kinetics and Morphology. Chemistry - A European Journal, 2017, 23, 5270-5280.	1.7	21
76	Nanospace geometry-sensitive molecular assembly. Supramolecular Science, 1998, 5, 267-273.	0.7	19
77	Exfoliated graphene ligands stabilizing copper cations. Carbon, 2011, 49, 3375-3378.	5.4	19
78	The effect of different organic solvents on sodium ion storage in carbon nanopores. Physical Chemistry Chemical Physics, 2018, 20, 6307-6315.	1.3	19
79	Nanoporosities and catalytic activities of Pd-tailored single wall carbon nanohorns. Journal of Colloid and Interface Science, 2008, 322, 209-214.	5.0	18
80	Mechanism of Sequential Water Transportation by Water Loading and Release in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2013, 4, 1211-1215.	2.1	18
81	High CO ₂ Sensitivity and Reversibility on Nitrogen-Containing Polymer by Remarkable CO ₂ Adsorption on Nitrogen Sites. Journal of Physical Chemistry C, 2018, 122, 24143-24149.	1.5	18
82	Electronically modified single wall carbon nanohorns with iodine adsorption. Chemical Physics Letters, 2011, 501, 485-490.	1.2	17
83	Structural Modeling of Dahlia-Type Single-Walled Carbon Nanohorn Aggregates by Molecular Dynamics. Journal of Physical Chemistry A, 2013, 117, 9057-9061.	1.1	17
84	Physico-Chemical Properties of Iodine-Adsorbed Single-Walled Carbon Nanotubes. Langmuir, 2009, 25, 1795-1799.	1.6	16
85	Interstitial nanopore change of single wall carbon nanohorn assemblies with high temperature treatment. Chemical Physics Letters, 2004, 389, 332-336.	1.2	15
86	Initial filling mechanism of predominant water adsorption on hydrophobic slit-shaped carbon nanopores. Journal of Physics: Conference Series, 2009, 177, 012001.	0.3	15
87	Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation. Scientific Reports, 2016, 6, 28992.	1.6	15
88	Predominant nanoice growth in single-walled carbon nanotubes by water-vapor loading. RSC Advances, 2012, 2, 3634.	1.7	14
89	Enhanced CO ₂ Adsorptivity of Partially Charged Single Walled Carbon Nanotubes by Methylene Blue Encapsulation. Journal of Physical Chemistry C, 2012, 116, 11216-11222.	1.5	14
90	Energetic contribution to hydration shells in one-dimensional aqueous electrolyte solution by anomalous hydrogen bonds. Physical Chemistry Chemical Physics, 2013, 15, 5658.	1.3	14

#	Article	IF	CITATIONS
91	Diffusion of ions and solvent in propylene carbonate solutions for lithium-ion battery applications. Journal of Molecular Liquids, 2020, 320, 114351.	2.3	14
92	Role of Gas Adsorption in Nanopore Characterization. Studies in Surface Science and Catalysis, 2002, , 11-18.	1.5	13
93	High-Pressure Synthesis of a Novel PbFeO ₃ . Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	13
94	Storage Function of Carbon Nanospaces For Molecules and Ions. ECS Transactions, 2007, 11, 63-75.	0.3	13
95	Adsorptivities of Extremely High Surface Area Activated Carbon Fibres for CH ₄ and H ₂ . Adsorption Science and Technology, 2009, 27, 877-881.	1.5	13
96	Hydrophobic-to-hydrophilic affinity change of sub-monolayer water molecules at water–graphene interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127393.	2.3	13
97	Pore characterization of assembly-structure controlled single wall carbon nanotube. Adsorption, 2007, 13, 509-514.	1.4	12
98	Fine pore mouth structure of molecular sieve carbon withÂGCMC-assisted supercritical gas adsorption analysis. Adsorption, 2009, 15, 114-122.	1.4	12
99	Efficient production of H2 and carbon nanotube from CH4 over single wall carbon nanohorn. Chemical Physics Letters, 2009, 482, 269-273.	1.2	12
100	Facilitation of Water Penetration through Zero-Dimensional Gates on Rolled-up Graphene by Cluster–Chain–Cluster Transformations. Journal of Physical Chemistry C, 2012, 116, 12339-12345.	1.5	12
101	Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube. Adsorption, 2011, 17, 643-651.	1.4	11
102	Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT) by Liquid-Phase Molecular Adsorption of Hexaiodobenzene. Materials, 2013, 6, 535-543.	1.3	11
103	Anomalously Enhanced Hydration of Aqueous Electrolyte Solution in Hydrophobic Carbon Nanotubes to Maintain Stability. ChemPhysChem, 2014, 15, 415-419.	1.0	11
104	Systematic sorption studies of camptothecin on oxidized single-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 121-132.	2.3	11
105	The effect of different organic solvents and anion salts on sodium ion storage in cylindrical carbon nanopores. Physical Chemistry Chemical Physics, 2019, 21, 22722-22731.	1.3	11
106	Nanostructure Characterization of Carbon Materials with Superwide Pressure Range Adsorption Technique with the Aid of Grand Canonical Monte Carlo Simulation. Journal of Physical Chemistry B, 2004, 108, 10651-10657.	1.2	10
107	Coordinated NH3-Removal-Induced Hydrogen Adsorption of Cu-Complex Crystals. Langmuir, 2008, 24, 170-174.	1.6	10
108	High-pressure synthesis and characterization of a novel perovskite PbFe1/2V1/2O3. Journal of the Ceramic Society of Japan, 2009, 117, 102-105.	0.5	10

#	Article	IF	CITATIONS
109	Formation of COx-Free H2 and Cup-Stacked Carbon Nanotubes over Nano-Ni Dispersed Single Wall Carbon Nanohorns. Langmuir, 2012, 28, 7564-7571.	1.6	10
110	Temperature-Dependent Double-Step CO ₂ Occlusion of K ₂ CO ₃ under Moist Conditions. Adsorption Science and Technology, 2015, 33, 243-250.	1.5	10
111	Evaluation of carbon nanopores using large molecular probes in grand canonical Monte Carlo simulations and experiments. Carbon, 2015, 88, 133-138.	5.4	10
112	Fast Ion Transportation Associated with Recovering Hydration Shells in a Nanoelectrolyte between Conical Carbon Nanopores during Charging Cycles. Journal of Physical Chemistry C, 2017, 121, 10439-10444.	1.5	10
113	Extremely permeable porous graphene with high H ₂ /CO ₂ separation ability achieved by graphene surface rejection. Physical Chemistry Chemical Physics, 2017, 19, 18201-18207.	1.3	10
114	Irreversible adsorption of acidic, basic, and water gas molecules on calcium-deficient hydroxyapatite. Dalton Transactions, 2019, 48, 17507-17515.	1.6	10
115	GCMC simulations of dynamic structural change of Cu–organic crystals with N2adsorption. Journal of Experimental Nanoscience, 2006, 1, 91-95.	1.3	9
116	Mechanochemically Induced sp ³ -Bond-Associated Reconstruction of Single-Wall Carbon Nanohorns. Journal of Physical Chemistry C, 2008, 112, 8759-8762.	1.5	9
117	Porosity and Adsorption Properties of Single-Wall Carbon Nanohorn. , 2012, , 401-433.		9
118	Water Assistance in Ion Transfer during Charge and Discharge Cycles. Journal of Physical Chemistry C, 2015, 119, 15185-15194.	1.5	9
119	Graphene-laminated architectures obtained by chemical vapor deposition: From graphene to graphite. Chemical Physics Letters, 2017, 687, 303-306.	1.2	9
120	Interruption of Hydrogen Bonding Networks of Water in Carbon Nanotubes Due to Strong Hydration Shell Formation. Langmuir, 2017, 33, 11120-11125.	1.6	9
121	Nanospace Molecular Science and Adsorption. Adsorption, 2005, 11, 21-28.	1.4	8
122	M/Li+(M=Mg2+, Zn2+, and Mn2+) ion-exchange on lithium ion-conducting perovskite-type oxides and their properties. Solid State Ionics, 2006, 177, 2705-2709.	1.3	8
123	Choking Effect of Single-Wall Carbon Nanotubes on Solvent Adsorption in Radial Breathing Mode. Journal of Physical Chemistry C, 2007, 111, 3220-3223.	1.5	8
124	Selective probe of the morphology and local vibrations at carbon nanoasperities. Journal of Chemical Physics, 2012, 136, 064505.	1.2	8
125	Diffusionâ€Barrierâ€Free Porous Carbon Monoliths as a New Form of Activated Carbon. ChemSusChem, 2012, 5, 2271-2277	3.6	8
126	Cooperative Adsorption of Supercritical CH ₄ in Single-Walled Carbon Nanohorns for Compensation of Nanopore Potential. Journal of Physical Chemistry C, 2012, 116, 21870-21873.	1.5	8

#	Article	IF	CITATIONS
127	Adsorption Properties. , 2013, , 25-44.		8
128	Pore-size dependent effects on structure and vibrations of 1-ethyl-3-methylimidazolium tetrafluoroborate in nanoporous carbon. Chemical Physics Letters, 2015, 636, 129-133.	1.2	8
129	CO2Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites. International Journal of Chemical Engineering, 2016, 2016, 1-8.	1.4	8
130	Significant curvature effects of partially charged carbon nanotubes on electrolyte behavior investigated using Monte Carlo simulations. Physical Chemistry Chemical Physics, 2016, 18, 14543-14548.	1.3	8
131	Hybrid Reverse Molecular Dynamics Simulation as New Approach to Determination of Carbon Nanostructure of Carbon Blacks. Scientific Reports, 2020, 10, 3622.	1.6	8
132	Kinetic energy of neon atoms adsorbed on activated carbon. Surface Science, 2003, 526, 282-290.	0.8	7
133	Surface to volume ratio of carbon nanohorn – A crucial factor in CO2/CH4 mixture separation. Chemical Physics Letters, 2014, 595-596, 67-72.	1.2	7
134	Piezoresistive and chemiresistive gas sensing by metal-free graphene layers. Physical Chemistry Chemical Physics, 2020, 22, 3089-3096.	1.3	7
135	Local Ordered Structure of Propylene Carbonate in Slit-Shaped Carbon Nanopores by GCMC Simulation. ISRN Nanotechnology, 2011, 2011, 1-5.	1.3	7
136	The Martensitic Transformation and Extra Reflections Appearing Prior to the Transformation in AuCd Alloy. Materials Research Society Symposia Proceedings, 1996, 459, 295.	0.1	6
137	Separation of adsorption isotherms of N2 in internal and interstitial nanopores of single-walled carbon nanohorn – A comparative study with experiment and simulation. Studies in Surface Science and Catalysis, 2002, 144, 521-527.	1.5	6
138	Hydrogen absorption enhancement of nanocrystalline Li3N/Li2C2 composite. International Journal of Hydrogen Energy, 2011, 36, 12902-12908.	3.8	6
139	CO ₂ Adsorption Properties of Activated Carbon Fibres under Ambient Conditions. Adsorption Science and Technology, 2012, 30, 621-626.	1.5	6
140	Consecutive Water Transport through Zero-Dimensional Graphene Gates of Single-Walled Carbon Nanohorns. Journal of Physical Chemistry C, 2016, 120, 8855-8862.	1.5	6
141	Enhancement of NH3 and water adsorption by introducing electron-withdrawing groups with maintenance of pore structures. Adsorption, 2019, 25, 87-94.	1.4	6
142	Fundamental Understanding of Nanoporous Carbons for Energy Application Potentials. Carbon Letters, 2009, 10, 177-180.	3.3	6
143	Fast Water Relaxation through Oneâ€Ðimensional Channels by Rapid Energy Transfer. ChemPhysChem, 2016, 17, 3409-3415.	1.0	5
144	Crossover from localized to diffusive water dynamics in carbon nanohorns: A comprehensive quasielastic neutron-scattering analysis. Physical Review E, 2016, 93, 022104.	0.8	5

#	Article	IF	CITATIONS
145	Study toward high-performance thermally driven air-conditioning systems. AIP Conference Proceedings, 2017, , .	0.3	5
146	Low-Temperature CO ₂ Thermal Reduction to Graphitic and Diamond-like Carbons Using Perovskite-Type Titanium Nanoceramics by Quasi-High-Pressure Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 3860-3873.	3.2	5
147	Linking the Defective Structure of Boron-Doped Carbon Nano-Onions with Their Catalytic Properties: Experimental and Theoretical Studies. ACS Applied Materials & Interfaces, 2021, 13, 51628-51642.	4.0	5
148	Sequential and simultaneous ion transfer into carbon nanopores during charge–discharge cycles in electrical double layer capacitors. Sustainable Energy and Fuels, 2022, 6, 2001-2009.	2.5	5
149	Synthesis and adsorption ability of nanoparticles of perovskite oxynitride LaTiO2N. Journal of the Ceramic Society of Japan, 2009, 117, 1345-1348.	0.5	4
150	Pseudometallization of single wall carbon nanotube bundles with intercalation of naphthalene. Physical Review B, 2010, 82, .	1.1	4
151	Excess Adsorption of Helium in Extremely Narrow Slit Pores. Journal of Low Temperature Physics, 2014, 177, 274-282.	0.6	4
152	Anomalous changes of intermolecular distance in aqueous electrolytes in narrow pores of carbon nanotubes. Adsorption, 2019, 25, 1067-1074.	1.4	4
153	Dehydration of Cations Inducing Fast Ion Transfer and High Electrical Capacitance Performance on Graphene Electrode in Aqueous Electrolytes. Industrial & Engineering Chemistry Research, 2020, 59, 5768-5774.	1.8	4
154	Adsorption of Cd(II) onto Activated Carbon Fiber Prepared by Urea Treatment. Kagaku Kogaku Ronbunshu, 2012, 38, 242-249.	0.1	4
155	Nanoscale Irregularity Analysis of Carbon Fibre Surfaces with a High-Resolution αS-Plot. Adsorption Science and Technology, 2004, 22, 595-601.	1.5	3
156	Structural studies of water in a confined hydrophobic environment. Journal of Physics: Conference Series, 2009, 177, 012010.	0.3	3
157	Pore-Width-Dependent Preferential Interaction of sp ² Carbon Atoms in Cyclohexene with Graphitic Slit Pores by GCMC Simulation. Journal of Nanomaterials, 2011, 2011, 1-7.	1.5	3
158	BaTiO ₃ nanoparticles and nanorods synthesized in carbon nanohorns. Tanso, 2017, 2017, 198-202.	0.1	3
159	Water and hydrate structures in carbon nanopores. Tanso, 2014, 2014, 91-103.	0.1	3
160	Temperature-dependent CO ₂ sorption and thermal-reduction without reactant gases on BaTiO ₃ nanocatalysts at low temperatures in the range of 300–1000 K. Nanoscale, 2022, 14, 8318-8325.	2.8	3
161	Adsorptive Properties of Novel Nanoporous Materials. Journal of Chemical Engineering of Japan, 2007, 40, 1159-1165.	0.3	2
162	A new route to nanoscale ceramics in asymmetric reaction fields of carbon nanospaces. RSC Advances, 2014, 4, 32647-32650.	1.7	2

#	ARTICLE	IF	CITATIONS
163	Freezing Point Elevation of an Aqueous Solution in 3 nm Diameter Carbon Nanotubes. Journal of Physical Chemistry C, 2020, 124, 14213-14219.	1.5	2
164	Water Adsorption Control by Surface Nanostructures on Graphene-Related Materials by Grand Canonical Monte Carlo Simulations. Langmuir, 2021, 37, 14646-14656.	1.6	2
165	Contribution of preformed monolayer to micropore filling. Studies in Surface Science and Catalysis, 2001, , 833-836.	1.5	1
166	NEW NANOPOROUS ADSORBENTS. , 2007, , .		1
167	Thermally Stimulated Light Reflection and Photoluminescence of BaTiO ₃ . Langmuir, 2018, 34, 10250-10253.	1.6	1
168	Fundamental Aspects of Supercritical Gas Adsorption. Green Energy and Technology, 2019, , 13-40.	0.4	1
169	Fundamental Science of Gas Storage. Green Energy and Technology, 2019, , 41-64.	0.4	1
170	Structure of Molecules and Ions Confined in Carbon Nanospaces. ECS Meeting Abstracts, 2007, , .	0.0	0
171	Mesoporous Ni–Fe Alloys. Adsorption Science and Technology, 2008, 26, 581-588.	1.5	0
172	Fuel Cell-Related Reaction Activities of Nanoporous Metallic Platinum. Adsorption Science and Technology, 2010, 28, 39-47.	1.5	0
173	Temperature dependence of water structure in carbon nanotubes. Tanso, 2013, 2013, 195-200.	0.1	0
174	Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition. Chemical Physics Letters, 2016, 652, 199-202.	1.2	0