
Roger G Bowers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1536452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host–parasite fluctuating selection in the absence of specificity. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171615.	2.6	25
2	A model to assess the efficacy of vaccines for control of liver fluke infection. Scientific Reports, 2016, 6, 23345.	3.3	19
3	Evolution, the loss of diversity and the role of trade-offs. Mathematical Biosciences, 2015, 264, 86-93.	1.9	5
4	HOW SPECIFICITY AND EPIDEMIOLOGY DRIVE THE COEVOLUTION OF STATIC TRAIT DIVERSITY IN HOSTS AND PARASITES. Evolution; International Journal of Organic Evolution, 2014, 68, 1594-1606.	2.3	48
5	Two-Host, Two-Vector Basic Reproduction Ratio (R0) for Bluetongue. PLoS ONE, 2013, 8, e53128.	2.5	27
6	Modelling bluetongue virus transmission between farms using animal and vector movements. Scientific Reports, 2012, 2, 319.	3.3	45
7	The importance of who infects whom: the evolution of diversity in host resistance to infectious disease. Ecology Letters, 2012, 15, 1104-1111.	6.4	20
8	On the determination of evolutionary outcomes directly from the population dynamics of the resident. Journal of Mathematical Biology, 2011, 62, 901-924.	1.9	4
9	Evolutionary Behaviour, Trade-Offs and Cyclic andÂChaotic Population Dynamics. Bulletin of Mathematical Biology, 2011, 73, 1154-1169.	1.9	11
10	The effect of delayed host self-regulation on host–pathogen population cycles in forest insects. Journal of Theoretical Biology, 2009, 258, 240-249.	1.7	2
11	A baseline model for the co-evolution of hosts and pathogens. Journal of Mathematical Biology, 2008, 57, 791-809.	1.9	2
12	The influence of trade-off shape on evolutionary behaviour in classical ecological scenarios. Journal of Theoretical Biology, 2008, 250, 498-511.	1.7	60
13	Can possible evolutionary outcomes be determined directly from the population dynamics?. Theoretical Population Biology, 2008, 74, 311-323.	1.1	5
14	Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 19-28.	2.6	58
15	When is evolutionary branching in predator–prey systems possible with an explicit carrying capacity?. Mathematical Biosciences, 2007, 210, 1-16.	1.9	18
16	The adaptive dynamics of the evolution of host resistance to indirectly transmitted microparasites. Mathematical Biosciences, 2007, 210, 668-679.	1.9	1
17	Dynamics of infection with multiple transmission mechanisms in unmanaged/managed animal populations. Theoretical Population Biology, 2007, 71, 408-423.	1.1	13
18	Pair approximations and the inclusion of indirect transmission: Theory and application to between farm transmission of Salmonella. Journal of Theoretical Biology, 2007, 244, 532-540.	1.7	12

ROGER G BOWERS

#	Article	IF	CITATIONS
19	Modelling the stability of Stx lysogens. Journal of Theoretical Biology, 2007, 248, 241-250.	1.7	9
20	A semi-stochastic model of the transmission of Escherichia coli O157 in a typical UK dairy herd: Dynamics, sensitivity analysis and intervention/prevention strategies. Journal of Theoretical Biology, 2006, 241, 806-822.	1.7	23
21	Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. Journal of Mathematical Biology, 2006, 53, 61-85.	1.9	45
22	Understanding the dynamics of Salmonella infections in dairy herds: a modelling approach. Journal of Theoretical Biology, 2005, 233, 159-175.	1.7	38
23	The geometric theory of adaptive evolution: trade-off and invasion plots. Journal of Theoretical Biology, 2005, 233, 363-377.	1.7	68
24	Infection in Social Networks: Using Network Analysis to Identify High-Risk Individuals. American Journal of Epidemiology, 2005, 162, 1024-1031.	3.4	298
25	Adaptive dynamics of Lotka–Volterra systems with trade-offs: the role of interspecific parameter dependence in branching. Mathematical Biosciences, 2005, 193, 101-117.	1.9	30
26	The evolution of resistance through costly acquired immunity. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 715-723.	2.6	100
27	A model appropriate to the transmission of a human food-borne pathogen in a multigroup managed herd. Preventive Veterinary Medicine, 2003, 57, 175-198.	1.9	33
28	Baseline criteria and the evolution of hosts and parasites: D0, R0 and competition for resources between strains. Journal of Theoretical Biology, 2003, 223, 361-365.	1.7	6
29	Parasite establishment in host communities. Ecology Letters, 2003, 6, 837-842.	6.4	205
30	Modelling pathogen transmission: the interrelationship between local and global approaches. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 105-112.	2.6	30
31	A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiology and Infection, 2002, 129, 147-153.	2.1	388
32	The adaptive dynamics of Lotka–Volterra systems with trade-offs. Mathematical Biosciences, 2002, 175, 67-81.	1.9	15
33	Community Dynamics, Trade-offs, Invasion Criteria and the Evolution of Host Resistance to Microparasites. Journal of Theoretical Biology, 2001, 212, 315-331.	1.7	16
34	The basic depression ratio of the host: the evolution of host resistance to microparasites. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 243-250.	2.6	20
35	A Baseline Model for the Apparent Competition between Many Host Strains: the Evolution of Host Resistance to Microparasites. Journal of Theoretical Biology, 1999, 200, 65-75.	1.7	16
36	Persistence of Tick-borne Virus in the Presence of Multiple Host Species: Tick Reservoirs and Parasite Mediated Competition. Journal of Theoretical Biology, 1999, 200, 111-118.	1.7	169

Roger G Bowers

#	ARTICLE	IF	CITATIONS
37	Three Mechanisms of Host Resistance to Microparasites—Avoidance, Recovery and Tolerance—Show Different Evolutionary Dynamics. Journal of Theoretical Biology, 1999, 201, 13-23.	1.7	141
38	A Model of Disease and Vaccination for Infections with Acute and Chronic Phases. Journal of Theoretical Biology, 1998, 190, 355-367.	1.7	16
39	A dynamic refuge model and population regulation by insect parasitoids. Journal of Animal Ecology, 1998, 67, 270-279.	2.8	27
40	Community Structure and the Interplay between Interspecific Infection and Competition. Journal of Theoretical Biology, 1997, 187, 95-109.	1.7	76
41	Red/blue chaotic power spectra. Nature, 1996, 381, 198-198.	27.8	18
42	Host-Pathogen Cycles in Self-Regulated Forest Insect Systems: Resolving Conflicting Predictions. American Naturalist, 1996, 148, 220-225.	2.1	27
43	ECOLOGICAL MODELS OF MICROPARASITIC DISEASES: THE IMPORTANCE OF RECOVERY AND IMMUNITY. Journal of Biological Systems, 1995, 03, 813-820.	1.4	1
44	Host-Host-Pathogen Models and Microbial Pest Control: The Effect of Host Self Regulation. Journal of Theoretical Biology, 1994, 169, 275-287.	1.7	52
45	Host-Pathogen Population Cycles in Forest Insects? Lessons from Simple Models Reconsidered. Oikos, 1993, 67, 529.	2.7	64
46	Disease and Community Structure: The Importance of Host Self-Regulation in a Host-Host-Pathogen Model. American Naturalist, 1992, 139, 1131-1150.	2.1	117
47	A host-host-pathogen model with free-living infective stages, applicable to microbial pest control. Journal of Theoretical Biology, 1991, 148, 305-329.	1.7	51
48	Some Critical Properties of the Heisenberg Model. Physical Review, 1969, 177, 917-932.	2.7	45
49	Lattice Model for theλTransition in a Bose Fluid. Physical Review Letters, 1967, 19, 630-632.	7.8	56