List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1536255/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications. Journal of Controlled Release, 2017, 252, 95-107.	9.9	168
2	Structure, functionality and applications of debranched starch: A review. Trends in Food Science and Technology, 2017, 63, 70-79.	15.1	128
3	Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme. Food Chemistry, 2016, 203, 308-313.	8.2	108
4	Relationship between structure and retrogradation properties of corn starch treated with 1,4-α-glucan branching enzyme. Food Hydrocolloids, 2016, 52, 868-875.	10.7	100
5	Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydrate Polymers, 2015, 122, 417-427.	10.2	99
6	Molecular structure and digestibility of banana flour and starch. Food Hydrocolloids, 2017, 72, 219-227.	10.7	98
7	The effect of xanthan on short and longâ€ŧerm retrogradation of rice starch. Starch/Staerke, 2013, 65, 702-708.	2.1	97
8	Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. International Journal of Biological Macromolecules, 2017, 101, 1004-1011.	7.5	90
9	Pullulanase hydrolysis behaviors and hydrogel properties ofÂdebranched starches from different sources. Food Hydrocolloids, 2015, 45, 351-360.	10.7	76
10	Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum. Carbohydrate Polymers, 2016, 147, 243-250.	10.2	71
11	Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes. Food Hydrocolloids, 2021, 110, 106224.	10.7	67
12	Maltooligosaccharide-forming amylase: Characteristics, preparation, and application. Biotechnology Advances, 2017, 35, 619-632.	11.7	66
13	Preparation, characterization and properties of starch-based adhesive for wood-based panels. International Journal of Biological Macromolecules, 2019, 134, 247-254.	7.5	66
14	Digestibility and changes to structural characteristics of green banana starch during inÂvitro digestion. Food Hydrocolloids, 2015, 49, 192-199.	10.7	64
15	In structure and in - vitro digestibility of waxy corn starch debranched by pullulanase. Food Hydrocolloids, 2017, 67, 104-110.	10.7	63
16	Preparation and Characterization of Insulin-Loaded Zein/Carboxymethylated Short-Chain Amylose Complex Nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66, 9335-9343.	5.2	63
17	Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. Journal of Controlled Release, 2019, 313, 1-13.	9.9	63
18	Characteristics of starch-based Pickering emulsions from the interface perspective. Trends in Food Science and Technology, 2020, 105, 334-346.	15.1	60

#	Article	lF	CITATIONS
19	Recent advances of starch-based excipients used in extended-release tablets: a review. Drug Delivery, 2016, 23, 12-20.	5.7	55
20	Comparative study on the interaction between native corn starch and different hydrocolloids during gelatinization. International Journal of Biological Macromolecules, 2018, 116, 136-143.	7.5	55
21	Effects of montmorillonite addition on the performance of starch-based wood adhesive. Carbohydrate Polymers, 2015, 115, 394-400.	10.2	51
22	Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch. International Journal of Biological Macromolecules, 2017, 103, 630-639.	7.5	48
23	Effect of heat-moisture treatment on the in vitro digestibility and physicochemical properties of starch-hydrocolloid complexes. Food Hydrocolloids, 2020, 104, 105736.	10.7	48
24	Effects of heat pretreatment of starch on graft copolymerization reaction and performance of resulting starch-based wood adhesive. International Journal of Biological Macromolecules, 2017, 96, 11-18.	7.5	47
25	Improving the performance of starch-based wood adhesive by using sodium dodecyl sulfate. Carbohydrate Polymers, 2014, 99, 579-583.	10.2	46
26	Effect of high pressure steam on the eating quality of cooked rice. LWT - Food Science and Technology, 2019, 104, 100-108.	5.2	46
27	Binary and Tertiary Complex Based on Short-Chain Glucan and Proanthocyanidins for Oral Insulin Delivery. Journal of Agricultural and Food Chemistry, 2017, 65, 8866-8874.	5.2	43
28	Pasting and rheologic properties of potato starch and maize starch mixtures. Starch/Staerke, 2011, 63, 11-16.	2.1	42
29	Digestion properties of corn starch modified by α-D-glucan branching enzyme and cyclodextrin glycosyltransferase. Food Hydrocolloids, 2019, 89, 534-541.	10.7	42
30	Effects of hydrocolloids on corn starch retrogradation. Starch/Staerke, 2015, 67, 348-354.	2.1	41
31	Preparation of a starch-based carrier for oral delivery of Vitamin E to the small intestine. Food Hydrocolloids, 2019, 91, 26-33.	10.7	40
32	Preparation and characterization of pullulanase debranched starches and their properties for drug controlled-release. RSC Advances, 2015, 5, 97066-97075.	3.6	39
33	Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme. International Journal of Biological Macromolecules, 2017, 97, 679-687.	7.5	38
34	Effects of molecular interactions in debranched high amylose starch on digestibility and hydrogel properties. Food Hydrocolloids, 2020, 101, 105498.	10.7	38
35	Effect of a dual modification by hydroxypropylation and acid hydrolysis on the structure and rheological properties of potato starch. Food Hydrocolloids, 2018, 77, 825-833.	10.7	37
36	Fabrication and characterization of complex nanoparticles based on carboxymethyl short chain amylose and chitosan by ionic gelation. Food and Function, 2018, 9, 2902-2912.	4.6	35

#	Article	IF	CITATIONS
37	An investigation into the structure and digestibility of starch-oleic acid complexes prepared under various complexing temperatures. International Journal of Biological Macromolecules, 2019, 138, 966-974.	7.5	33
38	A two-stage modification method using 1,4-α-glucan branching enzyme lowers the in vitro digestibility of corn starch. Food Chemistry, 2020, 305, 125441.	8.2	33
39	Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. International Journal of Biological Macromolecules, 2020, 155, 273-285.	7.5	33
40	Effect of amylose on pasting and rheological properties of corn starch/xanthan blends. Starch/Staerke, 2015, 67, 98-106.	2.1	30
41	Liquefaction concentration impacts the fine structure of maltodextrin. Industrial Crops and Products, 2018, 123, 687-697.	5.2	30
42	Digestion rate of tapioca starch was lowed through molecular rearrangement catalyzed by 1,4-α-glucan branching enzyme. Food Hydrocolloids, 2018, 84, 117-124.	10.7	30
43	Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Carbohydrate Polymers, 2021, 262, 117926.	10.2	30
44	Heat pretreatment improves the enzymatic hydrolysis of granular corn starch at high concentration. Process Biochemistry, 2018, 64, 193-199.	3.7	29
45	Effects of acid hydrolysis intensity on the properties of starch/xanthan mixtures. International Journal of Biological Macromolecules, 2018, 106, 320-329.	7.5	27
46	Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Food Chemistry, 2019, 283, 170-176.	8.2	27
47	Alleviative effect of short-clustered maltodextrin on the quality deterioration of frozen dough: Compared with trehalose and guar gum. Food Hydrocolloids, 2021, 118, 106791.	10.7	27
48	Effects of emulsifier on the bonding performance and freeze–thaw stability of starch-based wood adhesive. Cellulose, 2013, 20, 2583-2590.	4.9	26
49	Molecular interactions in debranched waxy starch and their effects on digestibility and hydrogel properties. Food Hydrocolloids, 2018, 84, 166-172.	10.7	26
50	Buckwheat digestibility affected by the chemical and structural features of its main components. Food Hydrocolloids, 2019, 96, 596-603.	10.7	25
51	An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Critical Reviews in Food Science and Nutrition, 2023, 63, 1930-1941.	10.3	25
52	Comparison of bioaccessibility of astaxanthin encapsulated in starch-based double emulsion with different structures. Carbohydrate Polymers, 2021, 272, 118475.	10.2	25
53	Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films. International Journal of Biological Macromolecules, 2018, 111, 959-966.	7.5	23
54	Evolutionary Stability of Salt Bridges Hints Its Contribution to Stability of Proteins. Computational and Structural Biotechnology Journal, 2019, 17, 895-903.	4.1	23

#	Article	IF	CITATIONS
55	Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers. Food Hydrocolloids, 2021, 119, 106837.	10.7	23
56	An Innovative Short-Clustered Maltodextrin as Starch Substitute for Ameliorating Postprandial Glucose Homeostasis. Journal of Agricultural and Food Chemistry, 2021, 69, 354-367.	5.2	23
57	Met349 Mutations Enhance the Activity of 1,4-α-Glucan Branching Enzyme from <i>Geobacillus thermoglucosidans</i> STB02. Journal of Agricultural and Food Chemistry, 2017, 65, 5674-5680.	5.2	22
58	Additional salt bridges improve the thermostability of 1,4-α-glucan branching enzyme. Food Chemistry, 2020, 316, 126348.	8.2	22
59	Assessment of starch-based wood adhesive quality by confocal Raman microscopic detection of reaction homogeneity. Carbohydrate Polymers, 2015, 131, 75-79.	10.2	21
60	Leu600 mutations decrease product inhibition of the β-cyclodextrin glycosyltransferase from Bacillus circulans STB01. International Journal of Biological Macromolecules, 2018, 115, 1194-1201.	7.5	21
61	Sustained release of tea polyphenols from a debranched corn starch–xanthan gum complex carrier. LWT - Food Science and Technology, 2019, 103, 325-332.	5.2	21
62	Combinatorial effect of fermentation and drying on the relationship between the structure and expansion properties of tapioca starch and potato starch. International Journal of Biological Macromolecules, 2020, 145, 965-973.	7.5	21
63	Conjugated linoleic acid loaded starch-based emulsion nanoparticles: In vivo gastrointestinal controlled release. Food Hydrocolloids, 2020, 101, 105477.	10.7	21
64	Effect of debranching on the structure and digestibility of octenyl succinic anhydride starch nanoparticles. LWT - Food Science and Technology, 2021, 141, 111076.	5.2	21
65	Two 1,4-α-glucan branching enzymes successively rearrange glycosidic bonds: A novel synergistic approach for reducing starch digestibility. Carbohydrate Polymers, 2021, 262, 117968.	10.2	21
66	Structural Features and Digestibility of Corn Starch With Different Amylose Content. Frontiers in Nutrition, 2021, 8, 692673.	3.7	21
67	Thermostabilization of a thermophilic 1,4-α-glucan branching enzyme through C-terminal truncation. International Journal of Biological Macromolecules, 2018, 107, 1510-1518.	7.5	20
68	Impact of celluloses and pectins restrictions on gluten development and water distribution in potato-wheat flour dough. International Journal of Biological Macromolecules, 2022, 206, 534-542.	7.5	20
69	Structure and emulsification properties of octenyl succinic anhydride starch using acidâ€hydrolyzed method. Starch/Staerke, 2017, 69, 1600039.	2.1	19
70	Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Critical Reviews in Biotechnology, 2020, 40, 380-396.	9.0	19
71	Expression and characterization of an extremely thermophilic 1,4-α-glucan branching enzyme from Rhodothermus obamensis STB05. Protein Expression and Purification, 2019, 164, 105478.	1.3	18
72	Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulase. International Journal of Biological Macromolecules, 2019, 131, 564-571.	7.5	18

#	Article	IF	CITATIONS
73	Structure-Based Engineering of a Maltooligosaccharide-Forming Amylase To Enhance Product Specificity. Journal of Agricultural and Food Chemistry, 2020, 68, 838-844.	5.2	18
74	Alanine 310 is important for the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02. International Journal of Biological Macromolecules, 2017, 97, 156-163.	7.5	17
75	Structural and functional characteristics of butyrylated maize starch. LWT - Food Science and Technology, 2019, 112, 108254.	5.2	17
76	Effects of lowâ€ŧemperature blanching on tissue firmness and cell wall strengthening during sweet potato flour processing. International Journal of Food Science and Technology, 2014, 49, 1360-1366.	2.7	16
77	Potassium and sodium ions enhance the activity and thermostability of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidasius in the presence of glycerol. International Journal of Biological Macromolecules, 2017, 102, 712-717.	7.5	16
78	Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. International Journal of Biological Macromolecules, 2019, 138, 394-402.	7.5	16
79	Inclusion of tributyrin during enzymatic synthesis of cyclodextrins by β-cyclodextrin glycosyltransferase from Bacillus circulans. Food Hydrocolloids, 2020, 99, 105336.	10.7	16
80	Flexible Loop in Carbohydrate-Binding Module 48 Allosterically Modulates Substrate Binding of the 1,4-α-Glucan Branching Enzyme. Journal of Agricultural and Food Chemistry, 2021, 69, 5755-5763.	5.2	16
81	Fine structure impacts highly concentrated starch liquefaction process and product performance. Industrial Crops and Products, 2021, 164, 113347.	5.2	16
82	Preparation and characterization of octenyl succinic anhydride modified waxy maize starch hydrolyzate/chitosan complexes with enhanced interfacial properties. Carbohydrate Polymers, 2021, 267, 118228.	10.2	16
83	Preparation and structural properties of starch phosphate modified by alkaline phosphatase. Carbohydrate Polymers, 2022, 276, 118803.	10.2	16
84	Vancomycin Pretreatment on MPTP-Induced Parkinson's Disease Mice Exerts Neuroprotection by Suppressing Inflammation Both in Brain and Gut. Journal of NeuroImmune Pharmacology, 2023, 18, 72-89.	4.1	16
85	Expression and Biochemical Characterization of a Thermostable Branching Enzyme from <i>Ceobacillus thermoglucosidans</i> . Journal of Molecular Microbiology and Biotechnology, 2016, 26, 303-311.	1.0	15
86	Effects of acid hydrolysis on the structure, physicochemical properties and digestibility of starch-myristic acid complexes. LWT - Food Science and Technology, 2019, 113, 108274.	5.2	15
87	Butyrylated starch protects mice from DSS-induced colitis: combined effects of butyrate release and prebiotic supply. Food and Function, 2021, 12, 11290-11302.	4.6	15
88	Effect of cassava starch structure on scalding of dough and baking expansion ability. Food Chemistry, 2021, 352, 129350.	8.2	15
89	Efficient formation of carvacrol inclusion complexes during β-cyclodextrin glycosyltransferase-catalyzed cyclodextrin synthesis. Food Control, 2021, 130, 108296.	5.5	15
90	Effects of different gelatinization degrees of starch in potato flour on the quality of steamed bread. International Journal of Biological Macromolecules, 2022, 209, 144-152.	7.5	15

#	Article	IF	CITATIONS
91	The degree of substitution of OSA-modified starch affects the retention and release of encapsulated mint flavour. Carbohydrate Polymers, 2022, 294, 119781.	10.2	15
92	Nanosilica Sol Leads to Further Increase in Polyethylene Glycol (PEG) 1000-Enhanced Thermostability of β-Cyclodextrin Glycosyltransferase from <i>Bacillus circulans</i> . Journal of Agricultural and Food Chemistry, 2014, 62, 2919-2924.	5.2	14
93	Effect of NaCl addition on the freeze-thaw stability of tapioca starch gels. Starch/Staerke, 2015, 67, 604-611.	2.1	14
94	Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans. International Journal of Biological Macromolecules, 2016, 83, 111-116.	7.5	14
95	Effect of ripening on in vitro digestibility and structural characteristics of plantain (Musa ABB) starch. Food Hydrocolloids, 2019, 93, 235-241.	10.7	14
96	Characterization the structural property and degradation behavior of corn starch in KOH/thiourea aqueous solution. Carbohydrate Polymers, 2021, 270, 118363.	10.2	14
97	Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Carbohydrate Polymers, 2014, 108, 112-117.	10.2	13
98	Non-classical secretion of 1,4-alpha-glucan branching enzymes without signal peptides in Escherichia coli. International Journal of Biological Macromolecules, 2019, 132, 759-765.	7.5	13
99	Novel Short-Clustered Maltodextrin as a Dietary Starch Substitute Attenuates Metabolic Dysregulation and Restructures Gut Microbiota in <i>db</i> /di>/di>/di>/di>/di>/di>/di>/di>/di>/	5.2	13
100	Effects of sugar, salt and acid on tapioca starch and tapioca starchâ€xanthan gum combinations. Starch/Staerke, 2014, 66, 436-443.	2.1	12
101	Structure of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 provides insights into its product specificity. International Journal of Biological Macromolecules, 2020, 154, 1303-1313.	7.5	12
102	Butyl Group Distribution, Intestinal Digestion, and Colonic Fermentation Characteristics of Different Butyrylated Starches. Journal of Agricultural and Food Chemistry, 2022, 70, 3289-3299.	5.2	12
103	Polysaccharide-coated porous starch-based oral carrier for paclitaxel: Adsorption and sustained release in colon. Carbohydrate Polymers, 2022, 291, 119571.	10.2	12
104	Mutations at calcium binding site III in cyclodextrin glycosyltransferase improve β-cyclodextrin specificity. International Journal of Biological Macromolecules, 2015, 76, 224-229.	7.5	11
105	Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-α-Glucan Branching Enzyme from <i>Geobacillus thermoglucosidans</i> STB02. Journal of Agricultural and Food Chemistry, 2020, 68, 13791-13797.	5.2	11
106	Encapsulating tributyrin during enzymatic cyclodextrin synthesis improves the solubility and bioavailability of tributyrin. Food Hydrocolloids, 2021, 113, 106512.	10.7	11
107	Emulsification properties of enzymatically treated octenylâ€succinic anhydride starch. Starch/Staerke, 2014, 66, 1089-1095.	2.1	10
108	Influence of guar gum on the in vitro digestibility of tapioca starch. Starch/Staerke, 2016, 68, 339-347.	2.1	10

#	Article	IF	CITATIONS
109	Enzyme assisted fermentation of potato pulp: An effective way to reduce water holding capacity and improve drying efficiency. Food Chemistry, 2018, 258, 118-123.	8.2	10
110	Importance of Trp139 in the product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Applied Microbiology and Biotechnology, 2019, 103, 9433-9442.	3.6	10
111	The desirable salt bridges in amylases: Distribution, configuration and location. Food Chemistry, 2021, 354, 129475.	8.2	10
112	Ultrasonic pretreatment improves the highâ€ŧemperature liquefaction of corn starch at high concentrations. Starch/Staerke, 2017, 69, 1600002.	2.1	9
113	Variants at position 603 of the CGTase from Bacillus circulans STB01 for reducing product inhibition. International Journal of Biological Macromolecules, 2019, 136, 460-468.	7.5	9
114	Impacts of Environmental Factors on Pasting Properties of Cassava Flour Mediated by Its Macronutrients. Frontiers in Nutrition, 2020, 7, 598960.	3.7	9
115	Preparation and antibacterial activity of a novel maltotetraose product. Process Biochemistry, 2021, 108, 8-17.	3.7	9
116	Complexation behavior of octenyl succinic anhydride starch with chitosan. Food Hydrocolloids, 2021, 119, 106848.	10.7	9
117	Cyclodextrin glycosyltransferase variants experience different modes of product inhibition. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 203-210.	1.8	8
118	Effect of temperature, pH, and ionic strength on the structure and physical stability of double emulsions prepared with starch. LWT - Food Science and Technology, 2021, 141, 111086.	5.2	8
119	Immobilization of β-cyclodextrin glycosyltransferase on gelatin enhances β-cyclodextrin production. Process Biochemistry, 2022, 113, 216-223.	3.7	8
120	Disulfide Bond Engineering for Enhancing the Thermostability of the Maltotetraose-Forming Amylase from Pseudomonas saccharophila STB07. Foods, 2022, 11, 1207.	4.3	8
121	Effect of increased pressure on the coated layer profile of steamed rice. Food Chemistry, 2020, 310, 125971.	8.2	7
122	Combined effects of wheat gluten and carboxymethylcellulose on dough rheological behaviours and gluten network of potato–wheat flourâ€based bread. International Journal of Food Science and Technology, 2021, 56, 4149-4158.	2.7	7
123	Structure and Menthone Encapsulation of Corn Starch Modified by Octenyl Succinic Anhydride and Enzymatic Treatment. Journal of Food Quality, 2022, 2022, 1-10.	2.6	7
124	Pasting properties and multi-scale structures of Spirodela starch and its comparison with normal corn and rice starch. Food Hydrocolloids, 2022, 132, 107865.	10.7	7
125	Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Biotechnology Letters, 2020, 42, 295-303.	2.2	6
126	New insights into the alleviating role of starch derivatives on dough quality deterioration caused by freeze. Food Chemistry, 2021, 362, 130240.	8.2	6

#	Article	IF	CITATIONS
127	The amino acid on the top of the active groove allosterically modulates product specificity of the 1,4-α-glucan branching enzyme. Food Chemistry, 2022, 384, 132458.	8.2	6
128	Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch–fatty acid complexes. Journal of the Science of Food and Agriculture, 2022, 102, 5837-5848.	3.5	6
129	A temperatureâ€mediated twoâ€step saccharification process enhances maltose yield from highâ€concentration maltodextrin solutions. Journal of the Science of Food and Agriculture, 2021, 101, 3742-3748.	3.5	5
130	A review of controlled release from cyclodextrins: release methods, release systems and application. Critical Reviews in Food Science and Nutrition, 2023, 63, 4744-4756.	10.3	5
131	Complexation behavior of carboxymethyl short-chain amylose and quaternized chitosan. International Journal of Biological Macromolecules, 2022, 209, 1914-1921.	7.5	5
132	Synergistic effect of sodium dodecyl sulfate and salts on the gelation properties of acid-hydrolyzed-hydroxypropylated potato starch. LWT - Food Science and Technology, 2018, 93, 556-562.	5.2	4
133	Rule-enhanced Noisy Knowledge Graph Embedding via Low-quality Error Detection. , 2020, , .		4
134	Maltose binding site 2 mutations affect product inhibition of Bacillus circulans STB01 cyclodextrin glycosyltransferase. International Journal of Biological Macromolecules, 2021, 175, 254-261.	7.5	4
135	Effects of acid-ethanol hydrolysis and debranch on acetylated starch and its potential used for curcumin carrier. Carbohydrate Polymers, 2022, 279, 119019.	10.2	4
136	Importance of C-Terminal Extension in Thermophilic 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02. Applied Biochemistry and Biotechnology, 2020, 190, 1010-1022.	2.9	3
137	Study on rapid drying and spoilage prevention of potato pulp using solid-state fermentation with Aspergillus aculeatus. Bioresource Technology, 2020, 296, 122323.	9.6	3
138	The in vivo digestibility study of banana flour with high content of resistant starch at different ripening stages. Food and Function, 2020, 11, 10945-10953.	4.6	3
139	Effect of starch-hydrocolloid complexes with heat-moisture treatment on <i>in vivo</i> digestibility. Food and Function, 2021, 12, 8017-8025.	4.6	3
140	KOH/thiourea aqueous solution: A potential solvent for studying the dissolution mechanism and chain conformation of corn starch. International Journal of Biological Macromolecules, 2022, 195, 86-92.	7.5	3
141	Double mutations enhance β-cyclization activity of cyclodextrin glycosyltransferase from Bacillus circulans. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S100-S105.	1.8	2
142	Fusion of maltooligosaccharide-forming amylases from two origins for the improvement of maltopentaose synthesis. Food Research International, 2021, 150, 110735.	6.2	2
143	Themes, Trends, and Knowledge Structure in 30 Years of Starch Research in Food Science and Technology: a Visualization Review. Starch/Staerke, 0, , 2100274.	2.1	2
144	Substrate Selectivity of a Novel Amylo-α-1,6-glucosidase from Thermococcus gammatolerans STB12. Foods, 2022, 11, 1442.	4.3	1

#	Article	IF	CITATIONS
145	Enzyme-assisted fermentation improves the antimicrobial activity and drying properties of potato pulp. LWT - Food Science and Technology, 2021, 141, 110874.	5.2	0