
James R Garey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1535621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Source of saline groundwater on tidally influenced blue holes on San Salvador Island, Bahamas. Hydrogeology Journal, 2021, 29, 429-441.	2.1	6
2	Relationship between aquifer biofilms and unattached microbial indicators of urban groundwater contamination. Molecular Ecology, 2021, 30, 324-342.	3.9	6
3	Surface runoff alters cave microbial community structure and function. PLoS ONE, 2020, 15, e0232742.	2.5	9
4	Expansion of the genus Imleria in North America to include Imleria floridana, sp. nov., and Imleria pallida, comb. nov Mycologia, 2020, 112, 423-437.	1.9	2
5	Aquifer Discharge Drives Microbial Community Change in Karst Estuaries. Estuaries and Coasts, 2018, 41, 430-443.	2.2	12
6	Microbial Function and Hydrochemistry within a Stratified Anchialine Sinkhole: A Window into Coastal Aquifer Interactions. Water (Switzerland), 2018, 10, 972.	2.7	24
7	The fate of urban springs: Pumping-induced seawater intrusion in a phreatic cave. Journal of Hydrology, 2018, 564, 230-245.	5.4	10
8	Changes in Eukaryotic and Bacterial Communities along a 120 m Transect Associated with a Shallow Marine Hydrothermal Vent. Frontiers in Marine Science, 2017, 4, .	2.5	1
9	MICROBIAL TEMPORAL DYNAMICS OF A NOVEL GYPSUM KARST SULFIDIC SPRING. , 2017, , .		1
10	Karst estuaries are governed by interactions between inland hydrological conditions and sea level. Journal of Hydrology, 2015, 527, 718-733.	5.4	21
11	Molecular analyses of microbial abundance and diversity in the water column of anchialine caves in Mallorca, Spain. International Journal of Speleology, 2014, 43, 217-226.	1.0	6
12	Globalâ€scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 2014, 23, 968-978.	5.8	171
13	Phylogeny, Biogeography, and Infrageneric Classification of <i>Harrisia</i> (Cactaceae). Systematic Botany, 2013, 38, 210-223.	0.5	36
14	Relationships and dispersal of the Caribbean species of <i>Harrisia</i> (sect. <i>Harrisia</i> ; Cactaceae) using AFLPs and seven DNA regions. Taxon, 2013, 62, 486-497.	0.7	8
15	Low opy nuclear primers and <i>ycf1</i> primers in Cactaceae. American Journal of Botany, 2012, 99, e405-7.	1.7	14
16	Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. EvoDevo, 2012, 3, 19.	3.2	19
17	Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets. Research in Microbiology, 2012, 163, 407-412.	2.1	12
18	Comparison of an inactive submarine spring with an active nearshore anchialine spring in Florida. Hydrobiologia, 2011, 677, 65-87.	2.0	21

JAMES R GAREY

#	Article	IF	CITATIONS
19	Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17720-17725.	7.1	165
20	Changes in Benthic Macrofauna Associated with a Shallow-Water Hydrothermal Vent Gradient in Papua New Guinea. Pacific Science, 2010, 64, 391-404.	0.6	18
21	Molecular profiling of soil animal diversity in natural ecosystems: Incongruence of molecular and morphological results. Soil Biology and Biochemistry, 2009, 41, 849-857.	8.8	48
22	The Florida amphioxus (Cephalochordata) hosts larvae of the tapeworm <i>Acanthobothrium brevissime</i> : natural history, anatomy and taxonomic identification of the parasite. Acta Zoologica, 2009, 90, 75-86.	0.8	18
23	Global diversity of tardigrades (Tardigrada) in freshwater. Hydrobiologia, 2008, 595, 101-106.	2.0	16
24	A Comparative Genomics Analysis of Codon Reassignments Reveals a Link with Mitochondrial Proteome Size and a Mechanism of Genetic Code Change Via Suppressor tRNAs. Journal of Molecular Evolution, 2007, 64, 399-410.	1.8	32
25	Global diversity of tardigrades (Tardigrada) in freshwater. , 2007, , 101-106.		1
26	A natural laboratory to study arsenic geobiocomplexity. Eos, 2006, 87, 221.	0.1	20
27	The Biology of Tardigrades: An Introduction to the 9th International Symposium on Tardigrada*. Hydrobiologia, 2006, 558, 1-3.	2.0	4
28	A Family Level Analysis of Tardigrade Phylogeny. Hydrobiologia, 2006, 558, 53-60.	2.0	45
29	The transition of a freshwater karst aquifer to an anoxic marine system. Estuaries and Coasts, 2005, 28, 686-693.	1.7	14
30	Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Molecular Phylogenetics and Evolution, 2004, 31, 178-191.	2.7	315
31	Comparative Evolutionary Genomics Unveils the Molecular Mechanism of Reassignment of the CTG Codon in Candida spp Genome Research, 2003, 13, 544-557.	5.5	111
32	The Lesser-Known Protostome Taxa: An Introduction and a Tribute to Robert P. Higgins. Integrative and Comparative Biology, 2002, 42, 611-618.	2.0	6
33	Systematic relationships of Nematomorpha based on molecular and morphological data. Invertebrate Biology, 2002, 121, 357-364.	0.9	52
34	Ecdysozoa: The Relationship between Cycloneuralia and Panarthropoda. Zoologischer Anzeiger, 2001, 240, 321-330.	0.9	70
35	The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology (United Kingdom), 2001, 147, 2379-2387.	1.8	161
36	Urochordates Are Monophyletic Within the Deuterostomes. Systematic Biology, 2000, 49, 52-64.	5.6	218

JAMES R GAREY

#	Article	IF	CITATIONS
37	Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4469-4474.	7.1	380
38	The evolutionary relationships of rotifers and acanthocephalans. Hydrobiologia, 1998, 387/387, 83-91.	2.0	97
39	A molecular evolutionary framework for the phylum Nematoda. Nature, 1998, 392, 71-75.	27.8	1,697
40	Phylogenetic Relationships of the Acanthocephala Inferred from 18S Ribosomal DNA Sequences. Molecular Phylogenetics and Evolution, 1998, 10, 287-298.	2.7	137
41	The position of the Arthropoda in the phylogenetic system. Journal of Morphology, 1998, 238, 263-285.	1.2	186
42	The Essential Role of "Minor―Phyla in Molecular Studies of Animal Evolution. American Zoologist, 1998, 38, 907-917.	0.7	59
43	Large-Scale Taxonomic Profiling of Eukaryotic Model Organisms: A Comparison of Orthologous Proteins Encoded by the Human, Fly, Nematode, and Yeast Genomes. Genome Research, 1998, 8, 590-598.	5.5	156
44	The position of the Arthropoda in the phylogenetic system. Journal of Morphology, 1998, 238, 263-285.	1.2	19
45	Review paper: The evolutionary relationships of rotifers and acanthocephalans. , 1998, , 83-91.		0
46	Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 1997, 387, 489-493.	27.8	1,502
47	Molecular Analysis Supports a Tardigrade-Arthropod Association. Invertebrate Biology, 1996, 115, 79.	0.9	110
48	Molecular evidence for Acanthocephala as a subtaxon of Rotifera. Journal of Molecular Evolution, 1996, 43, 287-292.	1.8	163
49	Molecular Evidence for Acanthocephala as a Subtaxon of Rotifera. Journal of Molecular Evolution, 1996, 43, 287-292.	1.8	8
50	Analysis of uroporphyrinogen decarboxylase complementary DNAs in sporadic porphyria cutanea tarda. Gastroenterology, 1993, 105, 165-169.	1.3	49
51	Uroporphyrinogen decarboxylase in Saccharomyces cerevisiae. HEM12 gene sequence and evidence for two conserved glycines essential for enzymatic activity. FEBS Journal, 1992, 205, 1011-1016.	0.2	27
52	Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNAserAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. Journal of Molecular Evolution, 1989, 28, 374-387.	1.8	246
53	Exon-Intron Organization in Genes of Earthworm and Vertebrate Globins. Science, 1988, 240, 334-336.	12.6	38
54	Structure and function of hemoglobin from Urechis caupo. Archives of Biochemistry and Biophysics, 1984, 228, 320-331.	3.0	38