
Cheol-Min Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1535163/publications.pdf Version: 2024-02-01

CHEOL-MIN PADE

#	Article	IF	CITATIONS
1	Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010, 39, 3115.	18.7	1,498
2	Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 2013, 42, 9011.	18.7	872
3	Black Phosphorus and its Composite for Lithium Rechargeable Batteries. Advanced Materials, 2007, 19, 2465-2468.	11.1	623
4	Fluorographene: A Wide Bandgap Semiconductor with Ultraviolet Luminescence. ACS Nano, 2011, 5, 1042-1046.	7.3	394
5	Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy and Environmental Science, 2012, 5, 6895.	15.6	371
6	Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. Journal of Materials Chemistry, 2010, 20, 4854.	6.7	232
7	Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2008, 11, A42.	2.2	169
8	Modified SiO as a high performance anode for Li-ion batteries. Journal of Power Sources, 2013, 222, 129-134.	4.0	167
9	Electrochemical behavior of SiO anode for Li secondary batteries. Journal of Electroanalytical Chemistry, 2011, 661, 245-249.	1.9	118
10	Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. Journal of Power Sources, 2009, 186, 206-210.	4.0	117
11	CNT@Fe ₃ O ₄ @C Coaxial Nanocables: Oneâ€Pot, Additiveâ€Free Synthesis and Remarkable Lithium Storage Behavior. Chemistry - A European Journal, 2013, 19, 9866-9874.	1.7	107
12	Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility. ACS Nano, 2018, 12, 2955-2967.	7.3	103
13	Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4820.	5.2	101
14	Electrochemical characteristics of ZnSe and its nanostructured composite for rechargeable Li-ion batteries. Journal of Power Sources, 2014, 251, 319-324.	4.0	95
15	Quasiâ€Intercalation and Facile Amorphization in Layered ZnSb for Liâ€Ion Batteries. Advanced Materials, 2010, 22, 47-52.	11.1	94
16	A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries. Electrochimica Acta, 2009, 54, 6367-6373.	2.6	92
17	Stibnite (Sb ₂ S ₃) and its amorphous composite as dual electrodes for rechargeable lithium batteries. Journal of Materials Chemistry, 2010, 20, 1097-1102.	6.7	90
18	Nanostructured Zn-based composite anodes for rechargeable Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 12767.	6.7	89

#	Article	IF	CITATIONS
19	Te/C nanocomposites for Li-Te Secondary Batteries. Scientific Reports, 2015, 5, 7969.	1.6	87
20	Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes. ACS Nano, 2017, 11, 6074-6084.	7.3	86
21	High-Rate Capability and Enhanced Cyclability of Antimony-Based Composites for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2007, 154, A917.	1.3	85
22	Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. Electrochimica Acta, 2011, 56, 2135-2139.	2.6	83
23	Silicon Diphosphide: A Si-Based Three-Dimensional Crystalline Framework as a High-Performance Li-Ion Battery Anode. ACS Nano, 2016, 10, 5701-5709.	7.3	81
24	Tetragonal Zinc Diphosphide and Its Nanocomposite as an Anode for Lithium Secondary Batteries. Chemistry of Materials, 2008, 20, 6319-6324.	3.2	80
25	Tin Selenides with Layered Crystal Structures for Li-Ion Batteries: Interesting Phase Change Mechanisms and Outstanding Electrochemical Behaviors. ACS Applied Materials & Interfaces, 2017, 9, 15439-15448.	4.0	80
26	Two-dimensional SnS2 materials as high-performance NO2 sensors with fast response and high sensitivity. Sensors and Actuators B: Chemical, 2018, 255, 616-621.	4.0	76
27	Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries. Energy Storage Materials, 2019, 17, 78-87.	9.5	72
28	Porous structured SnSb/C nanocomposites for Li-ion battery anodes. Chemical Communications, 2011, 47, 2122-2124.	2.2	66
29	Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries. Electrochemistry Communications, 2009, 11, 2165-2168.	2.3	61
30	Electrochemical mechanism of Li insertion/extraction in ZnS and ZnS/C anodes for Li-ion batteries. Electrochimica Acta, 2018, 265, 107-114.	2.6	57
31	Novel Antimony/Aluminum/Carbon Nanocomposite for High-Performance Rechargeable Lithium Batteries. Chemistry of Materials, 2008, 20, 3169-3173.	3.2	56
32	Layered Sb ₂ Te ₃ and its nanocomposite: a new and outstanding electrode material for superior rechargeable Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8562-8565.	5.2	55
33	2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes. Journal of Power Sources, 2019, 433, 126639.	4.0	54
34	Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries. Electrochimica Acta, 2016, 210, 588-595.	2.6	52
35	Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries. Electrochimica Acta, 2008, 54, 364-369.	2.6	51
36	New high-energy-density GeTe-based anodes for Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 3278-3288.	5.2	50

#	Article	IF	CITATIONS
37	Electrochemical Behaviors and Reaction Mechanism of Nanosilver with Lithium. Electrochemical and Solid-State Letters, 2009, 12, A171.	2.2	47
38	ZnTe and ZnTe/C nanocomposite: a new electrode material for high-performance rechargeable Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20075-20082.	5.2	46
39	Enhancement of hydrogen sorption properties of MgH2 with a MgF2 catalyst. International Journal of Hydrogen Energy, 2017, 42, 20120-20124.	3.8	45
40	Enhancement of the rate capability and cyclability of an Mg–C composite electrode for Li secondary batteries. Journal of Power Sources, 2006, 158, 1451-1455.	4.0	44
41	Zinc Phosphides as Outstanding Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 15053-15062.	4.0	44
42	Topotactic Li Insertion/Extraction in Hexagonal Vanadium Monophosphide. Chemistry of Materials, 2009, 21, 5566-5568.	3.2	42
43	Co _x P compounds: electrochemical conversion/partial recombination reaction and partially disproportionated nanocomposite for Li-ion battery anodes. RSC Advances, 2014, 4, 43227-43234.	1.7	42
44	Electrochemical Characteristics of TiSb[sub 2] and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A46.	1.3	41
45	Black P/graphene hybrid: A fast response humidity sensor with good reversibility and stability. Scientific Reports, 2017, 7, 10561.	1.6	40
46	Temporospatial Control of Graphene Wettability. Advanced Materials, 2016, 28, 661-667.	11.1	39
47	Robust Polyhedral CoTe ₂ –C Nanocomposites as High-Performance Li- and Na-Ion Battery Anodes. ACS Applied Energy Materials, 2020, 3, 4877-4887.	2.5	39
48	Partially reversible Li2O formation in ZnO: A critical finding supporting realization of highly reversible metal oxide electrodes. Journal of Power Sources, 2016, 328, 607-614.	4.0	37
49	Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes. Chemical Engineering Journal, 2020, 381, 122619.	6.6	37
50	Antimonides (FeSb2, CrSb2) with orthorhombic structure and their nanocomposites for rechargeable Li-ion batteries. Electrochimica Acta, 2010, 55, 4987-4994.	2.6	36
51	Co–Sb intermetallic compounds and their disproportionated nanocomposites as high-performance anodes for rechargeable Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11391-11399.	5.2	36
52	Highly Reversible and Superior Li-Storage Characteristics of Layered GeS ₂ and Its Amorphous Composites. ACS Applied Materials & Interfaces, 2016, 8, 29543-29550.	4.0	36
53	Porous carbon-free SnSb anodes for high-performance Na-ion batteries. Journal of Power Sources, 2018, 386, 34-39.	4.0	36
54	Effect of oxide layer thickness to nano–Si anode for Li-ion batteries. RSC Advances, 2013, 3, 9408.	1.7	34

#	Article	IF	CITATIONS
55	Puckered-layer-structured germanium monosulfide for superior rechargeable Li-ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 5685-5689.	5.2	34
56	Highly Reversible Na-Ion Reaction in Nanostructured Sb ₂ Te ₃ -C Composites as Na-Ion Battery Anodes. Journal of the Electrochemical Society, 2017, 164, A2056-A2064.	1.3	34
57	Self-Healing Graphene-Templated Platinum–Nickel Oxide Heterostructures for Overall Water Splitting. ACS Nano, 2022, 16, 930-938.	7.3	34
58	The effect of Cu addition on Ge-based composite anode for Li-ion batteries. Electrochimica Acta, 2010, 55, 3324-3329.	2.6	33
59	A Fundamental Understanding of Li Insertion/Extraction Behaviors in SnO and SnO2. Journal of the Electrochemical Society, 2015, 162, A2811-A2816.	1.3	30
60	Amorphized Sb-based composite for high-performance Li-ion battery anodes. Journal of Electroanalytical Chemistry, 2013, 700, 12-16.	1.9	29
61	Pd Nanocluster/Monolayer MoS ₂ Heterojunctions for Light-Induced Room-Temperature Hydrogen Sensing. ACS Applied Materials & Interfaces, 2021, 13, 14644-14652.	4.0	29
62	Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries. Scientific Reports, 2016, 6, 35980.	1.6	28
63	Electrochemical properties of Si–Zn–C composite as an anode material for lithium-ion batteries. Journal of Power Sources, 2007, 167, 520-523.	4.0	27
64	In situ fabrication of nanohybrid carbon/polyamide film providing robust binding and conductive network in silicon anode for lithium-ion battery. Journal of Power Sources, 2019, 410-411, 25-30.	4.0	26
65	Amorphous silicon dioxide-based composites for high-performance Li-ion battery anodes. Electrochimica Acta, 2018, 284, 220-225.	2.6	25
66	Germanium telluride: Layered high-performance anode for sodium-ion batteries. Electrochimica Acta, 2020, 331, 135393.	2.6	22
67	Electrochemical characteristics of ternary compound CoSbS for application in Li secondary batteries. Electrochemistry Communications, 2013, 28, 71-74.	2.3	21
68	Atomic interactions of two-dimensional PtS2 quantum dots/TiC heterostructures for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 293, 120227.	10.8	21
69	Nanostructured cobalt oxide-based composites for rechargeable Li-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 2631-2638.	1.2	20
70	Electrochemical lithium storage kinetics of self-organized nanochannel niobium oxide electrodes. Journal of Electroanalytical Chemistry, 2015, 746, 45-50.	1.9	19
71	Nanostructured SnSb/MOx (M = Al or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li storage performances. Journal of Materials Chemistry A, 2013, 1, 15316.	5.2	18
72	Robust nanocube framework CoS2-based composites as high-performance anodes for Li- and Na-ion batteries. Composites Part B: Engineering, 2022, 231, 109592.	5.9	17

#	Article	IF	CITATIONS
73	Nanostructured Si-FeSi ₂ -Graphite-C Composite: An Optimized and Practical Solution for Si-Based Anodes for Superior Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2221-A2229.	1.3	16
74	The electrochemical characteristics of Ag2S and its nanocomposite anodes for Li-ion batteries. Journal of Electroanalytical Chemistry, 2012, 667, 24-29.	1.9	15
75	Electrochemical performance of pyrolyzed polyacrylonitrile (PAN) based Sn/C composite anode for Li-ion batteries. Journal of Electroanalytical Chemistry, 2012, 671, 67-72.	1.9	15
76	High-performance carbon by amorphization and prepotassiation for potassium-ion battery anodes. Carbon, 2021, 181, 290-299.	5.4	15
77	Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries. Chemical Engineering Journal, 2021, 417, 129242.	6.6	15
78	Sb-based nanostructured composite with embedded TiO2 for Li-ion battery anodes. Materials Letters, 2013, 98, 15-18.	1.3	14
79	Amorphized ZnSb-based composite anodes for high-performance Li-ion batteries. RSC Advances, 2014, 4, 5830.	1.7	14
80	Facile conversion of waste glass into Li storage materials. Green Chemistry, 2019, 21, 1439-1447.	4.6	14
81	Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes. Journal of Applied Electrochemistry, 2019, 49, 207-216.	1.5	14
82	Sb-based intermetallics and nanocomposites as stable and fast Na-ion battery anodes. Chemical Engineering Journal, 2021, 409, 127380.	6.6	14
83	Insight into mechanism of temperature-dependent limit of NO2 detection using monolayer MoS2. Sensors and Actuators B: Chemical, 2021, 329, 129138.	4.0	14
84	Electrochemical lithium quasi-intercalation with arsenic. Journal of Solid State Electrochemistry, 2016, 20, 517-523.	1.2	12
85	Sn/In2O3/C Nanocomposite as an Anode for Li Ion Batteries and Its Reaction Mechanism. Journal of the Electrochemical Society, 2012, 159, A1912-A1915.	1.3	10
86	Controllable desulfurization in single layer MoS2 by cationic current treatment in hydrogen evolution reaction. Applied Surface Science, 2020, 507, 145181.	3.1	10
87	Sodium Quasiâ€Intercalation in Black P for Superior Sodiumâ€Ion Battery Anodes. Batteries and Supercaps, 2021, 4, 112-119.	2.4	9
88	Novel high-performance Ga ₂ Te ₃ anodes for Li-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20553-20564.	5.2	9
89	Disproportionated Tin Oxide and Its Nanocomposite for Highâ€Performance Lithiumâ€lon Battery Anodes. Energy Technology, 2015, 3, 658-665.	1.8	8
90	Wire Explosion Synthesis of a Sn/C Nanocomposite as an Anode Material for Li Secondary Batteries. Journal of the Korean Physical Society, 2011, 59, 3458-3462.	0.3	8

#	Article	IF	CITATIONS
91	Synthesis and Electrochemical Reaction Mechanism of Zn-TiOx-C Nanocomposite Anode Materials for Li Secondary Batteries. Journal of the Electrochemical Society, 2017, 164, A2683-A2688.	1.3	7
92	Nanostructured FeSn2/SnO2-based composites as high-performance anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 803, 80-87.	2.8	7
93	High Performance CoSn ₂ /SnO ₂ /C Nanocomposites for Li-Ion Battery Anodes. Journal of the Electrochemical Society, 2019, 166, A1114-A1120.	1.3	7
94	High-Energy-Density Gallium Antimonide Compound Anode and Optimized Nanocomposite Fabrication Route for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 8940-8951.	2.5	7
95	Mechanochemically induced transformation of CoO(OH) into Co ₃ O ₄ nanoparticles and their highly reversible Li storage characteristics. RSC Advances, 2017, 7, 10618-10623.	1.7	6
96	Rational Design of Fe 2 O 3 Nanocubeâ€Based Anodes for Highâ€Performance Li–Ion Batteries. ChemistrySelect, 2019, 4, 11103-11109.	0.7	6
97	Fe3O4 nanoparticles produced by mechanochemical transformation: A highly reversible electrode material for Li-ion batteries. Materials Letters, 2017, 199, 131-134.	1.3	5
98	Effect of carbon coating on Cu electrodes for hydrogen production by water splitting. International Journal of Hydrogen Energy, 2019, 44, 20641-20648.	3.8	5
99	High-performance CoSbS-based Na-ion battery anodes. Materials Today Energy, 2020, 17, 100470.	2.5	5
100	Nanomaterials for Green Science and Environmental Applications. Journal of Nanomaterials, 2015, 2015, 1-1.	1.5	3
101	Co–Ge compounds and their electrochemical performance as high-performance Li-ion battery anodes. Materials Today Energy, 2020, 18, 100530.	2.5	3
102	Bismuth and its nanocomposite: Reaction mechanism and rational nanocomposite fabrication process for superior sodiumâ€ion battery anodes. International Journal of Energy Research, 2022, 46, 9486-9497.	2.2	3
103	Implementation of Portable Automatic Tourniquet with High-Elasticity Biocompatible Strap. Applied Sciences (Switzerland), 2021, 11, 4653.	1.3	2
104	Monoclinic vanadium diphosphide as a high-performance lithium-ion battery anode. Journal of Alloys and Compounds, 2021, 875, 160061.	2.8	2
105	Black P@MO (MÂ=ÂMg, Al, or Ti) composites as superior Li-ion battery anodes. Chemical Engineering Journal, 2021, 424, 130366.	6.6	2
106	Graphene: Temporospatial Control of Graphene Wettability (Adv. Mater. 4/2016). Advanced Materials, 2016, 28, 594-594.	11.1	1
107	Surfactant-derived porous Sn2Nb2O7-graphene oxide composite as Li- and Na-ion storage materials. Journal of Alloys and Compounds, 2022, , 164943.	2.8	1