Samuel G Solomon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/153493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brief Stimuli Cast a Persistent Long-Term Trace in Visual Cortex. Journal of Neuroscience, 2022, 42, 1999-2010.	1.7	14
2	Plasticity in visual cortex is disrupted in a mouse model of tauopathy. Communications Biology, 2022, 5, 77.	2.0	17
3	Functional Organisation of the Mouse Superior Colliculus. Frontiers in Neural Circuits, 2022, 16, .	1.4	16
4	Retinal ganglion cells and the magnocellular, parvocellular, and koniocellular subcortical visual pathways from the eye to the brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 178, 31-50.	1.0	9
5	Creating and controlling visual environments using BonVision. ELife, 2021, 10, .	2.8	20
6	Lévy walk dynamics explain gamma burst patterns in primate cerebral cortex. Communications Biology, 2021, 4, 739.	2.0	11
7	Fractal spike dynamics and neuronal coupling in the primate visual system. Journal of Physiology, 2020, 598, 1551-1571.	1.3	8
8	Dynamic Contextual Modulation in Superior Colliculus of Awake Mouse. ENeuro, 2020, 7, ENEURO.0131-20.2020.	0.9	4
9	The koniocellular whiteboard. Journal of Comparative Neurology, 2019, 527, 505-507.	0.9	5
10	Interpreting the dimensions of neural feature representations revealed by dimensionality reduction. NeuroImage, 2018, 180, 41-67.	2.1	21
11	Integration of visual and whisker signals in rat superior colliculus. Scientific Reports, 2018, 8, 16445.	1.6	22
12	Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse. Journal of Physiology, 2018, 596, 6307-6332.	1.3	56
13	Temporal Contingencies Determine Whether Adaptation Strengthens or Weakens Normalization. Journal of Neuroscience, 2018, 38, 10129-10142.	1.7	16
14	Receptive Field Properties of Koniocellular On/Off Neurons in the Lateral Geniculate Nucleus of Marmoset Monkeys. Journal of Neuroscience, 2018, 38, 10384-10398.	1.7	24
15	Relationship between cortical state and spiking activity in the lateral geniculate nucleus of marmosets. Journal of Physiology, 2017, 595, 4475-4492.	1.3	14
16	Dynamic population codes of multiplexed stimulus features in primate area MT. Journal of Neurophysiology, 2017, 118, 203-218.	0.9	11
17	Visual Motion Discrimination by Propagating Patterns in Primate Cerebral Cortex. Journal of Neuroscience, 2017, 37, 10074-10084.	1.7	22
18	Spectral Signatures of Feedforward and Recurrent Circuitry in Monkey Area MT. Cerebral Cortex, 2017, 27, 2793-2808.	1.6	2

SAMUEL G SOLOMON

#	Article	IF	CITATIONS
19	Vision Guides Selection of Freeze or Flight Defense Strategies in Mice. Current Biology, 2016, 26, 2150-2154.	1.8	233
20	fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI. NeuroImage, 2016, 139, 337-345.	2.1	38
21	Spike sorting for large, dense electrode arrays. Nature Neuroscience, 2016, 19, 634-641.	7.1	671
22	fMRI adaptation revisited. Cortex, 2016, 80, 154-160.	1.1	62
23	Binocular Visual Responses in the Primate Lateral Geniculate Nucleus. Current Biology, 2015, 25, 3190-3195.	1.8	63
24	Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique. Applied Optics, 2015, 54, 10068.	2.1	8
25	Emergence of Complex Wave Patterns in Primate Cerebral Cortex. Journal of Neuroscience, 2015, 35, 4657-4662.	1.7	70
26	Spatial precision of population activity in primate area MT. Journal of Neurophysiology, 2015, 114, 869-878.	0.9	16
27	Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex. Cerebral Cortex, 2015, 25, 3182-3196.	1.6	42
28	A simpler primate brain: the visual system of the marmoset monkey. Frontiers in Neural Circuits, 2014, 8, 96.	1.4	127
29	Moving Sensory Adaptation beyond Suppressive Effects in Single Neurons. Current Biology, 2014, 24, R1012-R1022.	1.8	197
30	Integration and segregation of multiple motion signals by neurons in area MT of primate. Journal of Neurophysiology, 2014, 111, 369-378.	0.9	50
31	Cortical-Like Receptive Fields in the Lateral Geniculate Nucleus of Marmoset Monkeys. Journal of Neuroscience, 2013, 33, 6864-6876.	1.7	109
32	Textureâ€dependent motion signals in primate middle temporal area. Journal of Physiology, 2013, 591, 5671-5690.	1.3	5
33	Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse. Journal of Neurophysiology, 2013, 110, 1426-1440.	0.9	19
34	Noise Normalizes Firing Output of Mouse Lateral Geniculate Nucleus Neurons. PLoS ONE, 2013, 8, e57961.	1.1	8
35	Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. Journal of Physiology, 2012, 590, 4061-4077.	1.3	32
36	The impact of brief exposure to high contrast on the contrast response of neurons in primate lateral geniculate nucleus. Journal of Neurophysiology, 2011, 106, 1310-1321.	0.9	5

SAMUEL G SOLOMON

#	Article	IF	CITATIONS
37	Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset. Journal of Physiology, 2011, 589, 5741-5758.	1.3	46
38	Phase sensitivities, excitatory summation fields, and silent suppressive receptive fields of single neurons in the parastriate cortex of the cat. Journal of Neurophysiology, 2011, 106, 1688-1712.	0.9	5
39	Slow intrinsic rhythm in the koniocellular visual pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14659-14663.	3.3	46
40	Linear and Nonlinear Contributions to the Visual Sensitivity of Neurons in Primate Lateral Geniculate Nucleus. Journal of Neurophysiology, 2010, 104, 1884-1898.	0.9	34
41	Adaptable mechanisms sensitive to surface color in human vision. Journal of Vision, 2010, 10, 17-17.	0.1	14
42	Combination of subcortical color channels in human visual cortex. Journal of Vision, 2010, 10, 25-25.	0.1	48
43	Receptive field asymmetries produce color-dependent direction selectivity in primate lateral geniculate nucleus. Journal of Vision, 2010, 10, 1-1.	0.1	32
44	Adaptable Mechanisms That Regulate the Contrast Response of Neurons in the Primate Lateral Geniculate Nucleus. Journal of Neuroscience, 2009, 29, 5009-5021.	1.7	47
45	Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure. Journal of Vision, 2009, 9, 1-1.	0.1	116
46	Centre-surround effects on perceived orientation in complex images. Vision Research, 2008, 48, 1374-1382.	0.7	22
47	Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque. Journal of Neuroscience, 2008, 28, 4078-4087.	1.7	134
48	Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque. Journal of Neuroscience, 2008, 28, 1131-1139.	1.7	50
49	Cortical representation of color is binocular. Journal of Vision, 2008, 8, 6.	0.1	21
50	A New Code for Contrast in the Primate Visual Pathway. Journal of Neuroscience, 2007, 27, 3904-3909.	1.7	35
51	Two expressions of "surround suppression―in V1 that arise independent of cortical mechanisms of suppression. Visual Neuroscience, 2007, 24, 99-109.	0.5	37
52	The machinery of colour vision. Nature Reviews Neuroscience, 2007, 8, 276-286.	4.9	312
53	Suppressive Surrounds and Contrast Gain in Magnocellular-Pathway Retinal Ganglion Cells of Macaque. Journal of Neuroscience, 2006, 26, 8715-8726.	1.7	116
54	Chromatic Organization of Ganglion Cell Receptive Fields in the Peripheral Retina. Journal of Neuroscience, 2005, 25, 4527-4539.	1.7	97

SAMUEL G SOLOMON

#	Article	IF	CITATIONS
55	Chromatic Gain Controls in Visual Cortical Neurons. Journal of Neuroscience, 2005, 25, 4779-4792.	1.7	98
56	Early and Late Mechanisms of Surround Suppression in Striate Cortex of Macaque. Journal of Neuroscience, 2005, 25, 11666-11675.	1.7	245
57	The Impact of Suppressive Surrounds on Chromatic Properties of Cortical Neurons. Journal of Neuroscience, 2004, 24, 148-160.	1.7	95
58	Chromatic and spatial properties of parvocellular cells in the lateral geniculate nucleus of the marmoset (Callithrix jacchus). Journal of Physiology, 2004, 557, 229-245.	1.3	46
59	Profound Contrast Adaptation Early in the Visual Pathway. Neuron, 2004, 42, 155-162.	3.8	265
60	Interactions between color and luminance in the perception of orientation. Journal of Vision, 2003, 3, 1.	0.1	67
61	Modulation sensitivity of ganglion cells in peripheral retina of macaque. Vision Research, 2002, 42, 2893-2898.	0.7	51
62	Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus. Journal of Neuroscience, 2002, 22, 338-349.	1.7	213
63	Striate cortex in dichromatic and trichromatic marmosets: Neurochemical compartmentalization and geniculate input. Journal of Comparative Neurology, 2002, 450, 366-381.	0.9	44
64	Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature, 2001, 410, 933-936.	13.7	170
65	Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus. Journal of Physiology, 2001, 533, 519-535.	1.3	111
66	Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. European Journal of Neuroscience, 2000, 12, 4155-4170.	1.2	9
67	Temporal contrast sensitivity in the lateral geniculate nucleus of a New World monkey, the marmosetCallithrix jacchus. Journal of Physiology, 1999, 517, 907-917.	1.3	75