Cecilia Jimenez-Mallebrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534738/publications.pdf

Version: 2024-02-01

70 papers 3,537 citations

30 h-index 57 g-index

75 all docs

75 docs citations

75 times ranked 3784 citing authors

#	Article	IF	Citations
1	CRISPR/Cas9-Mediated Allele-Specific Disruption of a Dominant COL6A1 Pathogenic Variant Improves Collagen VI Network in Patient Fibroblasts. International Journal of Molecular Sciences, 2022, 23, 4410.	4.1	5
2	Personalized in vitro Extracellular Matrix Models of Collagen VI-Related Muscular Dystrophies. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851825.	4.1	4
3	The Capillary Morphogenesis Gene 2 Triggers the Intracellular Hallmarks of Collagen VI-Related Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 7651.	4.1	5
4	The Phenotype and Genotype of Congenital Myopathies Based on a Large Pediatric Cohort. Pediatric Neurology, 2021, 115, 50-65.	2.1	11
5	Association of Initial Maximal Motor Ability With Long-term Functional Outcome in Patients With COL6-Related Dystrophies. Neurology, 2021, 96, e1413-e1424.	1.1	10
6	Recurrent rhabdomyolysis and exercise intolerance: A new phenotype of late-onset thymidine kinase 2 deficiency. Molecular Genetics and Metabolism Reports, 2021, 26, 100701.	1.1	6
7	Pediatric SMA patients with complex spinal anatomy: Implementation and evaluation of a decision-tree algorithm for administration of nusinersen. European Journal of Paediatric Neurology, 2021, 31, 92-101.	1.6	6
8	Circulating Cell-Free Mitochondrial DNA in Cerebrospinal Fluid as a Biomarker for Mitochondrial Diseases. Clinical Chemistry, 2021, 67, 1113-1121.	3.2	7
9	Clinical presentation and proteomic signature of patients with <i>TANGO2</i> mutations. Journal of Inherited Metabolic Disease, 2020, 43, 297-308.	3.6	43
10	Biallelic mutations in Tenascin-X cause classical-like Ehlers-Danlos syndrome with slowly progressive muscular weakness. Neuromuscular Disorders, 2020, 30, 833-838.	0.6	2
11	Early and long-term effect of the treatment with pyridostigmine in patients with GMPPB-related congenital myasthenic syndrome. Neuromuscular Disorders, 2020, 30, 719-726.	0.6	3
12	Oxidative Phosphorylation Dysfunction Modifies the Cell Secretome. International Journal of Molecular Sciences, 2020, 21, 3374.	4.1	8
13	Longitudinal Study of Three microRNAs in Duchenne Muscular Dystrophy and Becker Muscular Dystrophy. Frontiers in Neurology, 2020, 11, 304.	2.4	17
14	Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy. Scientific Reports, 2020, 10, 10111.	3.3	20
15	Epilepsy in <i>LAMA2</i> àêrelated muscular dystrophy: An electroâ€clinicoâ€radiological characterization. Epilepsia, 2020, 61, 971-983.	5.1	12
16	A Convolutional Neural Network for the automatic diagnosis of collagen VI-related muscular dystrophies. Applied Soft Computing Journal, 2019, 85, 105772.	7.2	5
17	Deoxynucleoside Therapy for Thymidine Kinase 2–Deficient Myopathy. Annals of Neurology, 2019, 86, 293-303.	5.3	72
18	Late-onset thymidine kinase 2 deficiency: a review of 18 cases. Orphanet Journal of Rare Diseases, 2019, 14, 100.	2.7	29

#	Article	IF	CITATIONS
19	TRAPPC11 functions in autophagy by recruiting ATG2Bâ€WIPI4/WDR45 to preautophagosomal membranes. Traffic, 2019, 20, 325-345.	2.7	51
20	Muscle Involvement in a Large Cohort of Pediatric Patients with Genetic Diagnosis of Mitochondrial Disease. Journal of Clinical Medicine, 2019, 8, 68.	2.4	14
21	A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight, 2019, 4, .	5.0	33
22	Digital PCR quantification of miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy. Neuromuscular Disorders, 2017, 27, 15-23.	0.6	27
23	Homozygous truncating mutation in prenatally expressed skeletal isoform of TTN gene results in arthrogryposis multiplex congenita and myopathy without cardiac involvement. Neuromuscular Disorders, 2017, 27, 188-192.	0.6	30
24	Differences in Adipose Tissue and Lean Mass Distribution in Patients with Collagen VI Related Myopathies Are Associated with Disease Severity and Physical Ability. Frontiers in Aging Neuroscience, 2017, 9, 268.	3.4	7
25	GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS ONE, 2016, 11, e0148709.	2.5	133
26	Secondary coenzyme Q 10 deficiencies in oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders. Mitochondrion, 2016, 30, 51-58.	3.4	70
27	Digital PCR quantification of miR-30c and miR-181a as serum biomarkers in Duchenne muscular dystrophy. Neuromuscular Disorders, 2016, 26, S159.	0.6	1
28	Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmoregulation as a contributing pathogenic mechanism. Laboratory Investigation, 2016, 96, 872-884.	3.7	24
29	KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors. Journal of Neurology, 2016, 263, 517-523.	3.6	30
30	Transcriptome Analysis of Ullrich Congenital Muscular Dystrophy Fibroblasts Reveals a Disease Extracellular Matrix Signature and Key Molecular Regulators. PLoS ONE, 2015, 10, e0145107.	2.5	23
31	Long-term survival in a child with severe encephalopathy, multiple respiratory chain deficiency and GFM1 mutations. Frontiers in Genetics, 2015, 6, 102.	2.3	13
32	Mutation loads in different tissues from six pathogenic mtDNA point mutations. Mitochondrion, 2015, 22, 17-22.	3.4	15
33	Association between coenzyme Q10 and glucose transporter (GLUT1) deficiency. BMC Pediatrics, 2014, 14, 284.	1.7	15
34	Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics, 2014, 15, 91.	2.8	104
35	Coenzyme Q10 deficiency in mitochondrial DNA depletion syndromes. Mitochondrion, 2013, 13, 337-341.	3.4	51
36	Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes. PLoS ONE, 2013, 8, e59916.	2.5	42

#	Article	IF	Citations
37	Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets. PLoS ONE, 2013, 8, e77430.	2.5	23
38	Muscle Fiber Atrophy and Regeneration Coexist in Collagen VI-Deficient Human Muscle: Role of Calpain-3 and Nuclear Factor-l ^o B Signaling. Journal of Neuropathology and Experimental Neurology, 2012, 71, 894-906.	1.7	22
39	Flow cytometry analysis: A quantitative method for collagen VI deficiency screening. Neuromuscular Disorders, 2012, 22, 139-148.	0.6	23
40	Prognostic value of X-chromosome inactivation in symptomatic female carriers of dystrophinopathy. Orphanet Journal of Rare Diseases, 2012, 7, 82.	2.7	40
41	PGC-1α Induces Mitochondrial and Myokine Transcriptional Programs and Lipid Droplet and Glycogen Accumulation in Cultured Human Skeletal Muscle Cells. PLoS ONE, 2012, 7, e29985.	2.5	43
42	Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. Journal of Neurology, 2012, 259, 838-850.	3.6	72
43	Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect. American Journal of Human Genetics, 2011, 88, 162-172.	6.2	153
44	Cyclosporine A treatment for Ullrich congenital muscular dystrophy: a cellular study of mitochondrial dysfunction and its rescue. Brain, 2009, 132, 147-155.	7.6	37
45	Response to letter from Bernardi. Brain, 2009, 132, e122-e122.	7.6	O
46	Glycogen branching enzyme deficiency in an infant with severe congenital hypotonia: an emerging diagnosis of muscle weakness in the perinatal period. Histopathology, 2009, 54, 765-768.	2.9	7
47	A Comparative Study of αâ€Dystroglycan Glycosylation in Dystroglycanopathies Suggests that the Hypoglycosylation of αâ€Dystroglycan Does Not Consistently Correlate with Clinical Severity. Brain Pathology, 2009, 19, 596-611.	4.1	107
48	Exon skipping mutations in collagen VI are common and are predictive for severity and inheritance. Human Mutation, 2008, 29, 809-822.	2.5	134
49	Congenital Myasthenic Syndromes in childhood: Diagnostic and management challenges. Journal of Neuroimmunology, 2008, 201-202, 6-12.	2.3	114
50	Mild POMGnT1 Mutations Underlie a Novel Limb-Girdle Muscular Dystrophy Variant. Archives of Neurology, 2008, 65, 137-41.	4.5	73
51	Congenital myopathies. Current Opinion in Neurology, 2008, 21, 569-575.	3.6	66
52	Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain, 2007, 130, 2725-2735.	7.6	385
53	A congenital myopathy with diaphragmatic weakness not linked to the SMARD1 locus. Neuromuscular Disorders, 2007, 17, 174-179.	0.6	29
54	A comparative analysis of collagen VI production in muscle, skin and fibroblasts from 14 Ullrich congenital muscular dystrophy patients with dominant and recessive COL6A mutations. Neuromuscular Disorders, 2006, 16, 571-582.	0.6	97

#	Article	IF	Citations
55	Fukutingene mutations in steroid-responsive limb girdle muscular dystrophy. Annals of Neurology, 2006, 60, 603-610.	5.3	140
56	Congenital muscular dystrophy: molecular and cellular aspects. Cellular and Molecular Life Sciences, 2005, 62, 809-823.	5.4	123
57	A homozygous COL6A2 intron mutation causes in-frame triple-helical deletion and nonsense-mediated mRNA decay in a patient with Ullrich congenital muscular dystrophy. Human Genetics, 2005, 117, 460-466.	3.8	24
58	Prenatal diagnosis in laminin $\hat{l}\pm 2$ chain (merosin)-deficient congenital muscular dystrophy: A collective experience of five international centers. Neuromuscular Disorders, 2005, 15, 588-594.	0.6	35
59	A case presenting with delayed motor milestones. Neuromuscular Disorders, 2005, 15, 817-818.	0.6	2
60	Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I. Neuromuscular Disorders, 2005, 15, 836-843.	0.6	29
61	Antenatal and Postnatal Brain Magnetic Resonance Imaging in Muscle-Eye-Brain Disease. Archives of Neurology, 2004, 61, 1301-6.	4.5	25
62	Absence of neuronal nitric oxide synthase (nNOS) as a pathological marker for the diagnosis of Becker muscular dystrophy with rod domain deletions. Neuropathology and Applied Neurobiology, 2004, 30, 540-545.	3.2	50
63	Prenatal diagnosis of Ullrich congenital muscular dystrophy using haplotype analysis and collagen VI immunocytochemistry. Prenatal Diagnosis, 2004, 24, 440-444.	2.3	29
64	Abnormalities in $\hat{l}\pm$ -Dystroglycan Expression in MDC1C and LGMD2I Muscular Dystrophies. American Journal of Pathology, 2004, 164, 727-737.	3.8	154
65	A study of short utrophin isoforms in mice deficient for full-length utrophin. Mammalian Genome, 2003, 14, 47-60.	2.2	14
66	Profound skeletal muscle depletion of \hat{l}_{\pm} -dystroglycan in Walker-Warburg syndrome. European Journal of Paediatric Neurology, 2003, 7, 129-137.	1.6	33
67	Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscular Disorders, 2003, 13, 554-558.	0.6	72
68	Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of Â-dystroglycan. Human Molecular Genetics, 2003, 12, 2853-2861.	2.9	389
69	Up71 and Up140, two novel transcripts of utrophin that are homologues of short forms of dystrophin. Human Molecular Genetics, 1999, 8, 1271-1278.	2.9	40
70	The importance of verifying the novelty of a finding and the value of combining results. Annals of Clinical and Translational Neurology, 0, , .	3.7	1