Carles Escera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534524/publications.pdf Version: 2024-02-01

CADLES ESCEDA

#	Article	IF	CITATIONS
1	Deficient neural encoding of speech sounds in term neonates born after fetal growth restriction. Developmental Science, 2022, 25, e13189.	1.3	11
2	Neural repetition suppression to vocal and non-vocal sounds. Cortex, 2022, 148, 1-13.	1.1	2
3	Experimental Enhancement of Feelings of Transcendence, Tenderness, and Expressiveness by Music in Christian Liturgical Spaces. Frontiers in Psychology, 2022, 13, 844029.	1.1	2
4	Auditory Event-Related Potentials. , 2022, , 238-262.		0
5	Auditory Frequency-Following Responses. , 2022, , 263-274.		Ο
6	Emergence of prediction error along the human auditory hierarchy. Hearing Research, 2021, 399, 107954.	0.9	9
7	Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clinical EEG and Neuroscience, 2021, 52, 3-28.	0.9	13
8	Neural encoding of voice pitch and formant structure at birth as revealed by frequency-following responses. Scientific Reports, 2021, 11, 6660.	1.6	12
9	Early detection of language categories in face perception. Scientific Reports, 2021, 11, 9715.	1.6	7
10	Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study. NeuroImage, 2021, 231, 117866.	2.1	43
11	Frequency-Following Response in Newborns and Infants: A Systematic Review of Acquisition Parameters. Journal of Speech, Language, and Hearing Research, 2021, 64, 2085-2102.	0.7	11
12	Standard Tone Stability as a Manipulation of Precision in the Oddball Paradigm: Modulation of Prediction Error Responses to Fixed-Probability Deviants. Frontiers in Human Neuroscience, 2021, 15, 734200.	1.0	6
13	Altered event-related potentials and theta oscillations index auditory working memory deficits in healthy aging. Neurobiology of Aging, 2021, 108, 1-15.	1.5	8
14	Increased subcortical neural responses to repeating auditory stimulation in children with autism spectrum disorder. Biological Psychology, 2020, 149, 107807.	1.1	28
15	Effects of cTBS on the Frequency-Following Response and Other Auditory Evoked Potentials. Frontiers in Human Neuroscience, 2020, 14, 250.	1.0	10
16	Psychology Meets Archaeology: Psychoarchaeoacoustics for Understanding Ancient Minds and Their Relationship to the Sacred. Frontiers in Psychology, 2020, 11, 550794.	1.1	6
17	Phonological Task Enhances the Frequency-Following Response to Deviant Task-Irrelevant Speech Sounds. Frontiers in Human Neuroscience, 2019, 13, 245.	1.0	2
18	Auditory predictions shape the neural responses to stimulus repetition and sensory change. NeuroImage, 2019, 186, 200-210.	2.1	18

#	Article	IF	CITATIONS
19	The frequency-following response (FFR) to speech stimuli: AÂnormative dataset in healthy newborns. Hearing Research, 2019, 371, 28-39.	0.9	31
20	Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. NeuroImage, 2019, 184, 889-900.	2.1	18
21	Auditory Frequency-Following Responses. , 2019, , 1-13.		4
22	The Potential Effect of Forbrain as an Altered Auditory Feedback Device. Journal of Speech, Language, and Hearing Research, 2018, 61, 801-810.	0.7	5
23	The effects of aging on early stages of the auditory deviance detection system. Clinical Neurophysiology, 2018, 129, 2252-2258.	0.7	17
24	Dehydroepiandrosterone and Dehydroepiandrosterone-Sulfate and Emotional Processing. Vitamins and Hormones, 2018, 108, 413-441.	0.7	5
25	The potential use of Forbrain® in stuttering: A single-case study. Anuario De Psicologia, 2018, 48, 51-58.	0.1	1
26	Selective entrainment of brain oscillations drives auditory perceptual organization. NeuroImage, 2017, 159, 195-206.	2.1	25
27	Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal. Frontiers in Human Neuroscience, 2017, 11, 557.	1.0	35
28	Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature Communications, 2017, 8, 2148.	5.8	222
29	The Role of the Auditory Brainstem in Regularity Encoding and Deviance Detection. Springer Handbook of Auditory Research, 2017, , 101-120.	0.3	8
30	COMT and DRD2/ANKK-1 gene-gene interaction account for resetting of gamma neural oscillations to auditory stimulus-driven attention. PLoS ONE, 2017, 12, e0172362.	1.1	7
31	Functional dissociation between regularity encoding and deviance detection along the auditory hierarchy. European Journal of Neuroscience, 2016, 43, 529-535.	1.2	14
32	Timing predictability enhances regularity encoding in the human subcortical auditory pathway. Scientific Reports, 2016, 6, 37405.	1.6	21
33	Middle latency response correlates of single and double deviant stimuli in a multi-feature paradigm. Clinical Neurophysiology, 2016, 127, 388-396.	0.7	6
34	Early indices of deviance detection in humans and animal models. Biological Psychology, 2016, 116, 23-27.	1.1	43
35	Hormonal modulation of novelty processing in women: Enhanced under working memory load with high dehydroepiandrosterone-sulfate-to-dehydroepiandrosterone ratios. Neuroscience Letters, 2016, 634, 98-103.	1.0	3
36	Differential deviant probability effects on two hierarchical levels of the auditory novelty system. Biological Psychology, 2016, 120, 1-9.	1.1	11

#	Article	IF	CITATIONS
37	Involvement of the Serotonin Transporter Gene in Accurate Subcortical Speech Encoding. Journal of Neuroscience, 2016, 36, 10782-10790.	1.7	16
38	Variability in L2 phonemic learning originates from speech-specific capabilities: An MMN study on late bilinguals. Bilingualism, 2016, 19, 955-970.	1.0	18
39	Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence. PLoS ONE, 2015, 10, e0136794.	1.1	25
40	Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study. NeuroImage, 2015, 108, 75-86.	2.1	44
41	Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 2015, 68, 51-58.	0.7	55
42	Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) and emotional processing — A behavioral and electrophysiological approach. Hormones and Behavior, 2015, 73, 94-103.	1.0	11
43	Spatial auditory regularity encoding and prediction: Human middle-latency and long-latency auditory evoked potentials. Brain Research, 2015, 1626, 21-30.	1.1	8
44	Neuronal adaptation, novelty detection and regularity encoding in audition. Frontiers in Systems Neuroscience, 2014, 8, 111.	1.2	88
45	Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex. Human Brain Mapping, 2014, 35, 5701-5716.	1.9	27
46	Two Sequential Processes of Change Detection in Hierarchically Ordered Areas of the Human Auditory Cortex. Cerebral Cortex, 2014, 24, 143-153.	1.6	46
47	The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 2014, 51, 111-123.	1.2	114
48	Stratified medicine for mental disorders. European Neuropsychopharmacology, 2014, 24, 5-50.	0.3	152
49	<scp>EEG</scp> delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant taskâ€switch cues. Psychophysiology, 2014, 51, 658-672.	1.2	33
50	Functional relationships between mismatch negativity and early deviance-related effects. International Journal of Psychophysiology, 2014, 94, 146.	0.5	0
51	Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans. Brain Topography, 2014, 27, 527-538.	0.8	63
52	The Relationship between Dehydroepiandrosterone (DHEA), Working Memory and Distraction – A Behavioral and Electrophysiological Approach. PLoS ONE, 2014, 9, e104869.	1.1	15
53	Phasic boosting of auditory perception by visual emotion. Biological Psychology, 2013, 94, 471-478.	1.1	8
54	Electrophysiological index of acoustic temporal regularity violation in the middle latency range. Clinical Neurophysiology, 2013, 124, 2397-2405.	0.7	21

#	Article	IF	CITATIONS
55	Regularity encoding and deviance detection of frequency modulated sweeps: Human middle―and longâ€latency auditory evoked potentials. Psychophysiology, 2013, 50, 1275-1281.	1.2	7
56	Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy. European Journal of Neuroscience, 2013, 38, 3448-3455.	1.2	28
57	The Perception of Dynamic and Static Facial Expressions of Happiness and Disgust Investigated by ERPs and fMRI Constrained Source Analysis. PLoS ONE, 2013, 8, e66997.	1.1	51
58	The impact of early bilingualism on controlling a language learned late: an ERP study. Frontiers in Psychology, 2013, 4, 815.	1.1	61
59	Auditory Event-related Potentials. , 2013, , 1-29.		20
60	Novelty Detection in the Human Auditory Brainstem. Journal of Neuroscience, 2012, 32, 1447-1452.	1.7	88
61	Specific Neural Traces for Intonational Discourse Categories as Revealed by Human-evoked Potentials. Journal of Cognitive Neuroscience, 2012, 24, 843-853.	1.1	3
62	Is fast auditory change detection feature specific? An electrophysiological study in humans. Psychophysiology, 2012, 49, 933-942.	1.2	34
63	Auditory deviance detection revisited: Evidence for a hierarchical novelty system. International Journal of Psychophysiology, 2012, 85, 88-92.	0.5	115
64	Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biological Psychology, 2012, 89, 232-239.	1.1	40
65	Phase re-setting of gamma neural oscillations during novelty processing in an appetitive context. Biological Psychology, 2012, 89, 545-552.	1.1	2
66	The mismatch negativity (MMN) – A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 2012, 123, 424-458.	0.7	341
67	Spectrotemporal processing drives fast access to memory traces for spoken words. NeuroImage, 2012, 60, 2300-2308.	2.1	11
68	Detection of Simple and Pattern Regularity Violations Occurs at Different Levels of the Auditory Hierarchy. PLoS ONE, 2012, 7, e43604.	1.1	61
69	The Effects of Foreknowledge and Task-Set Shifting as Mirrored in Cue- and Target-Locked Event-Related Potentials. PLoS ONE, 2012, 7, e49486.	1.1	20
70	Early processing of pitch in the human auditory system. European Journal of Neuroscience, 2012, 36, 2972-2978.	1.2	29
71	COMT and ANKK1 gene–gene interaction modulates contextual updating of mental representations. NeuroImage, 2011, 56, 1641-1647.	2.1	26
72	Impaired preparatory re-mapping of stimulus–response associations and rule-implementation in schizophrenic patients—The role for differences in early processing. Biological Psychology, 2011, 87, 358-365.	1.1	15

#	Article	IF	CITATIONS
73	Fast Detection of Unexpected Sound Intensity Decrements as Revealed by Human Evoked Potentials. PLoS ONE, 2011, 6, e28522.	1.1	57
74	Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology, 2011, 48, 377-384.	1.2	123
75	Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology, 2011, 48, 774-783.	1.2	83
76	The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain, 2011, 134, 3435-3453.	3.7	180
77	Interactions between "What―and "When―in the Auditory System: Temporal Predictability Enhances Repetition Suppression. Journal of Neuroscience, 2011, 31, 18590-18597.	1.7	129
78	Dopamine transporter regulates the enhancement of novelty processing by a negative emotional context. Neuropsychologia, 2010, 48, 1483-1488.	0.7	17
79	The role of DAT1 gene on the rapid detection of task novelty. Neuropsychologia, 2010, 48, 4136-4141.	0.7	9
80	The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 2010, 31, 754-760.	1.2	58
81	Early change detection in humans as revealed by auditory brainstem and middleâ€latency evoked potentials. European Journal of Neuroscience, 2010, 32, 859-865.	1.2	90
82	Attention capture by novel sounds: Distraction versus facilitation. European Journal of Cognitive Psychology, 2010, 22, 481-515.	1.3	64
83	COMT and ANKK-1 gene-gene interaction accounts for distraction effect and resetting of the gamma neural oscillations to novel sounds. International Journal of Psychophysiology, 2010, 77, 231-231.	0.5	1
84	On the functional significance of Novelty-P3: Facilitation by unexpected novel sounds. Biological Psychology, 2010, 83, 143-152.	1.1	60
85	Tuning the brain for novelty detection under emotional threat: The role of increasing gamma phase-synchronization. Neurolmage, 2010, 49, 1038-1044.	2.1	38
86	Emotional Context Enhances Auditory Novelty Processing in Superior Temporal Gyrus. Cerebral Cortex, 2009, 19, 1521-1529.	1.6	37
87	Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism. NeuroReport, 2009, 20, 337-342.	0.6	6
88	ABNORMAL ERPS AND HIGH FREQUENCY BANDS POWER IN MULTIPLE SCLEROSIS. International Journal of Neuroscience, 2008, 118, 27-38.	0.8	18
89	Emotional context enhances auditory novelty processing: behavioural and electrophysiological evidence. European Journal of Neuroscience, 2008, 28, 1199-1206.	1.2	38
90	The cognitive locus of distraction by acoustic novelty in the cross-modal oddball task. Cognition, 2008, 106, 408-432.	1.1	136

#	Article	IF	CITATIONS
91	Reduced novelty-P3 associated with increased behavioral distractibility in schizophrenia. Biological Psychology, 2008, 78, 253-260.	1.1	34
92	Electrophysiological and behavioral evidence of gender differences in the modulation of distraction by the emotional context. Biological Psychology, 2008, 79, 307-316.	1.1	36
93	When Loading Working Memory Reduces Distraction: Behavioral and Electrophysiological Evidence from an Auditory-Visual Distraction Paradigm. Journal of Cognitive Neuroscience, 2008, 20, 1131-1145.	1.1	159
94	Brain potentials to native phoneme discrimination reveal the origin of individual differences in learning the sounds of a second language. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16083-16088.	3.3	97
95	Negative emotional context enhances auditory novelty processing. NeuroReport, 2008, 19, 503-507.	0.6	27
96	Effects of sound location on visual task performance and electrophysiological measures of distraction. NeuroReport, 2008, 19, 1535-1539.	0.6	21
97	An event-related brain potential study of the arithmetic split effect. International Journal of Psychophysiology, 2007, 64, 165-173.	0.5	31
98	Mismatch negativity impairment associated with alcohol consumption in chronic alcoholics: A scalp current density study. International Journal of Psychophysiology, 2007, 65, 51-57.	0.5	11
99	The Mismatch Negativity 30 Years Later: How Far Have We Come?. Journal of Psychophysiology, 2007, 21, 129-132.	0.3	6
100	Role of Mismatch Negativity and Novelty-P3 in Involuntary Auditory Attention. Journal of Psychophysiology, 2007, 21, 251-264.	0.3	213
101	Individual differences in sequence learning and auditory pattern sensitivity as revealed with evoked potentials. European Journal of Neuroscience, 2007, 26, 261-264.	1.2	10
102	Problem size effect and processing strategies in mental arithmetic. NeuroReport, 2006, 17, 357-360.	0.6	44
103	Impaired duration mismatch negativity in developmental dyslexia. NeuroReport, 2006, 17, 1051-1055.	0.6	55
104	The effect of age on involuntary capture of attention by irrelevant sounds: A test of the frontal hypothesis of aging. Neuropsychologia, 2006, 44, 2564-2568.	0.7	162
105	Task Switching and Novelty Processing Activate a Common Neural Network for Cognitive Control. Journal of Cognitive Neuroscience, 2006, 18, 1734-1748.	1.1	221
106	Auditory event-related potentials as a function of abstract change magnitude. NeuroReport, 2005, 16, 301-305.	0.6	31
107	A kind of auditory â€~primitive intelligence' already present at birth. European Journal of Neuroscience, 2005, 21, 3201-3204.	1.2	84
108	Effects of dynamic rotation on event-related brain potentials. Cognitive Brain Research, 2005, 24, 307-316.	3.3	17

#	Article	IF	CITATIONS
109	Abnormal speech sound representation in persistent developmental stuttering. Neurology, 2005, 65, 1246-1252.	1.5	48
110	Electrophysiological evidence of enhanced distractibility in ADHD children. Neuroscience Letters, 2005, 374, 212-217.	1.0	102
111	Effects of auditory distraction on electrophysiological brain activity and performance in children aged 8-13 years. Psychophysiology, 2004, 41, 30-36.	1.2	106
112	Problem size effect in additions and subtractions: an event-related potential study. Neuroscience Letters, 2004, 373, 21-25.	1.0	35
113	Effects of temporal encoding on auditory object formation: a mismatch negativity study. Cognitive Brain Research, 2003, 16, 359-371.	3.3	29
114	Spatiotemporal dynamics of the auditory novelty-P3 event-related brain potential. Cognitive Brain Research, 2003, 16, 383-390.	3.3	96
115	Attention capture by auditory significant stimuli: semantic analysis follows attention switching. European Journal of Neuroscience, 2003, 18, 2408-2412.	1.2	157
116	Electrophysiological evidence of abnormal activation of the cerebral network of involuntary attention in alcoholism. Clinical Neurophysiology, 2003, 114, 134-146.	0.7	53
117	Event-Related Brain Potential Indices of Involuntary Attention to Auditory Stimulus Changes. , 2003, , 23-40.		7
118	ERPs and behavioural indices of long-term preattentive and attentive deficits after closed head injury. Neuropsychologia, 2002, 40, 2350-2359.	0.7	29
119	An electrophysiological and behavioral investigation of involuntary attention towards auditory frequency, duration and intensity changes. Cognitive Brain Research, 2002, 14, 325-332.	3.3	81
120	Auditory sensory memory as indicated by mismatch negativity in chronic alcoholism. Clinical Neurophysiology, 2001, 112, 728-731.	0.7	32
121	Auditory information processing during human sleep as revealed by event-related brain potentials. Clinical Neurophysiology, 2001, 112, 2031-2045.	0.7	107
122	Effects of Acoustic Gradient Noise from Functional Magnetic Resonance Imaging on Auditory Processing as Reflected by Event-Related Brain Potentials. NeuroImage, 2001, 14, 244-251.	2.1	40
123	Brain activity index of distractibility in normal school-age children. Neuroscience Letters, 2001, 314, 147-150.	1.0	73
124	Activation of brain mechanisms of attention switching as a function of auditory frequency change. NeuroReport, 2001, 12, 4093-4097.	0.6	92
125	Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. NeuroReport, 2001, 12, 2583-2587.	0.6	88
126	The H 1 -Receptor Antagonist dextro-Chlorpheniramine Impairs Selective Auditory Attention in the Absence of Subjective Awareness of This Impairment. Journal of Clinical Psychopharmacology, 2001, 21, 599-602.	0.7	11

#	Article	IF	CITATIONS
127	Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. European Journal of Neuroscience, 2001, 14, 877-883.	1.2	183
128	Mismatch Negativity: Clinical and Other Applications. Audiology and Neuro-Otology, 2000, 5, 105-110.	0.6	141
129	Acute and Chronic Effects of Alcohol on Preattentive Auditory Processing as Reflected by Mismatch Negativity. Audiology and Neuro-Otology, 2000, 5, 303-311.	0.6	32
130	Involuntary Attention and Distractibility as Evaluated with Event-Related Brain Potentials. Audiology and Neuro-Otology, 2000, 5, 151-166.	0.6	567
131	The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception. European Journal of Neuroscience, 2000, 12, 2570-2574.	1.2	161
132	The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clinical Neurophysiology, 2000, 111, 546-551.	0.7	55
133	Mismatch Negativity and Auditory Sensory Memory in Chronic Alcoholics. Alcoholism: Clinical and Experimental Research, 1999, 23, 1744-1750.	1.4	26
134	Event-related brain potentials reveal covert distractibility in closed head injuries. NeuroReport, 1999, 10, 2125-2129.	0.6	44
135	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 1998, 35, 211-224.	1.2	280
136	Combined mapping of human auditory EEG and MEG responses. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1998, 108, 370-379.	2.0	132
137	Neural Mechanisms of Involuntary Attention to Acoustic Novelty and Change. Journal of Cognitive Neuroscience, 1998, 10, 590-604.	1.1	758
138	Mismatch negativity and auditory sensory memory evaluation. NeuroReport, 1998, 9, 2451-2456.	0.6	48
139	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. , 1998, 35, 211.		19
140	Effects of involuntary auditory attention on visual task performance and brain activity. NeuroReport, 1997, 8, 3233-3237.	0.6	96
141	Effects of ethanol and auditory distraction on forced choice reaction time. Alcohol, 1996, 13, 153-156.	0.8	35
142	The H1-receptor antagonist chlorpheniramine decreases the ending phase of the mismatch negativity of the human auditory event-related potentials. Neuroscience Letters, 1996, 203, 77-80.	1.0	18
143	Short-term replicability of the mismatch negativity. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1996, 100, 549-554.	2.0	58
144	Ultradian rhythms in gross motor activity of adult humans. Physiology and Behavior, 1995, 57, 411-419.	1.0	12

6

#	Article	IF	CITATIONS
145	Ultradian rhythms in selective auditory attention performance. International Journal of Neuroscience, 1994, 79, 143-155.	0.8	3

146 Deviance Detection and Encoding Acoustic Regularity in the Auditory Midbrain. , 0, , 707-740.