Branka Salopek-Sondi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Temperatures Affect the Physiological Status and Phytochemical Content of Flat Leaf Kale (Brassica oleracea var. acephala) Sprouts. Foods, 2022, 11, 264.	4.3	11
2	Beneficial Microbes and Molecules for Mitigation of Soil Salinity in Brassica Species: A Review. Soil Systems, 2022, 6, 18.	2.6	8
3	Influence of Soil Salinity on Selected Element Contents in Different Brassica Species. Molecules, 2022, 27, 1878.	3.8	7
4	Salinity Stress as an Elicitor for Phytochemicals and Minerals Accumulation in Selected Leafy Vegetables of Brassicaceae. Agronomy, 2021, 11, 361.	3.0	32
5	Chilling and Freezing Temperature Stress Differently Influence Glucosinolates Content in Brassica oleracea var. acephala. Plants, 2021, 10, 1305.	3.5	22
6	Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress. International Journal of Molecular Sciences, 2021, 22, 7993.	4.1	28
7	Effects of Short-Term Exposure to Low Temperatures on Proline, Pigments, and Phytochemicals Level in Kale (Brassica oleracea var. acephala). Horticulturae, 2021, 7, 341.	2.8	17
8	The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants, 2021, 10, 118.	3.5	295
9	Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance. Plants, 2021, 10, 2346.	3.5	28
10	Green spathe of peace lily (Spathiphyllum wallisii): An assimilate source for developing fruit. South African Journal of Botany, 2019, 124, 54-62.	2.5	4
11	Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae. Plants, 2019, 8, 155.	3.5	65
12	Early Brassica Crops Responses to Salinity Stress: A Comparative Analysis Between Chinese Cabbage, White Cabbage, and Kale. Frontiers in Plant Science, 2019, 10, 450.	3.6	54
13	Cruciferous (Brassicaceae) Vegetables. , 2019, , 195-202.		17
14	Kale (<i>Brassica oleracea</i> var. <i>acephala</i>) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 2019, 59, 2411-2422.	10.3	142
15	Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiology and Biochemistry, 2018, 125, 74-84.	5.8	42
16	Correlations between Phytohormones and Drought Tolerance in Selected Brassica Crops: Chinese Cabbage, White Cabbage and Kale. International Journal of Molecular Sciences, 2018, 19, 2866.	4.1	53
17	Comparative analysis of phytochemicals and activity of endogenous enzymes associated with their stability, bioavailability and food quality in five Brassicaceae sprouts. Food Chemistry, 2018, 269, 96-102.	8.2	48
18	Auxin Amidohydrolases – From Structure to Function: Revisited. Croatica Chemica Acta, 2018, 91, .	0.4	6

BRANKA SALOPEK-SONDI

#	Article	IF	CITATIONS
19	White cabbage (Brassica oleracea var. capitata f. alba): botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 2017, 16, 117-135.	6.5	69
20	Formation and morphogenesis of a cuttlebone's aragonite biomineral structures for the common cuttlefish (Sepia officinalis) on the nanoscale: Revisited. Journal of Colloid and Interface Science, 2017, 508, 95-104.	9.4	20
21	A novel plant enzyme with dual activity: an atypical Nudix hydrolase and a dipeptidyl peptidase III. Biological Chemistry, 2017, 398, 101-112.	2.5	14
22	Azidolysis of epoxides catalysed by the halohydrin dehalogenase from Arthrobacter sp. AD2 and a mutant with enhanced enantioselectivity: an (S)-selective HHDH. Tetrahedron: Asymmetry, 2016, 27, 930-935.	1.8	17
23	The role of conserved Cys residues in Brassica rapa auxin amidohydrolase: Cys139 is crucial for the enzyme activity and Cys320 regulates enzyme stability. Physical Chemistry Chemical Physics, 2016, 18, 8890-8900.	2.8	6
24	Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chemistry, 2016, 194, 828-834.	8.2	100
25	The active site structure of manganese-containingBrassica rapaauxin-amidohydrolase BrILL2. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s210-s210.	0.1	0
26	Molecular and cellular approach in the study of antioxidant/pro-oxidant properties ofMicromeria croatica(Pers.) Schott. Natural Product Research, 2015, 29, 1770-1774.	1.8	7
27	Oxazolidinone Synthesis through Halohydrin Dehalogenase―Catalyzed Dynamic Kinetic Resolution. Advanced Synthesis and Catalysis, 2015, 357, 1709-1714.	4.3	22
28	Genetic and phytochemical variability of six Teucrium arduini L. populations and their antioxidant/prooxidant behaviour examined by biochemical, macromolecule- and cell-based approaches. Food Chemistry, 2015, 186, 298-305.	8.2	12
29	Assessing the authenticity of the white cabbage (Brassica oleracea var. capitata f. alba) cv. â€̃Varaždinski' by molecular and phytochemical markers. Food Research International, 2014, 60, 266-272.	6.2	23
30	Influence of stress hormones on the auxin homeostasis in Brassica rapa seedlings. Plant Cell Reports, 2013, 32, 1031-1042.	5.6	12
31	Reactive cysteine in the active-site motif of Bacteroides thetaiotaomicron dipeptidyl peptidase III is a regulatory residue for enzyme activity. Biological Chemistry, 2012, 393, 37-46.	2.5	22
32	Catalytic activity of halohydrin dehalogenases towards spiroepoxides. Organic and Biomolecular Chemistry, 2012, 10, 5063.	2.8	48
33	Alanine conjugate of indole-3-butyric acid improves rooting of highbush blueberries. Plant, Soil and Environment, 2012, 58, 236-241.	2.2	7
34	Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA. Journal of Plant Growth Regulation, 2012, 31, 63-78.	5.1	11
35	Colloid-chemical processes in the growth and design of the bio-inorganic aragonite structure in the scleractinian coral Cladocora caespitosa. Journal of Colloid and Interface Science, 2011, 354, 181-189.	9.4	22
36	Reproductive Development of the Christmas Rose (Helleborus niger L.): The Role of Plant Hormones. Croatica Chemica Acta, 2011, 84, 277-285.	0.4	5

#	Article	IF	CITATIONS
37	Human Dipeptidyl Peptidase III: the Role of Asn406 in Ligand Binding and Hydrolysis. Croatica Chemica Acta, 2011, 84, 259-268.	0.4	18
38	Endogenous Gibberellin Profile During Christmas Rose (Helleborus niger L.) Flower and Fruit Development. Journal of Plant Growth Regulation, 2010, 29, 194-209.	5.1	23
39	Free radical–scavenging activity and DNA damaging potential of auxins IAA and 2â€methylâ€IAA evaluated in human neutrophils by the alkaline comet assay. Journal of Biochemical and Molecular Toxicology, 2010, 24, 165-173.	3.0	12
40	Auxin Amidohydrolases from Brassica rapa Cleave the Alanine Conjugate of Indolepropionic Acid as a Preferable Substrate: A Biochemical and Modeling Approach. Plant and Cell Physiology, 2009, 50, 1587-1599.	3.1	24
41	In Memory of Dr. Volker Magnus, Plant Biologist. Journal of Plant Growth Regulation, 2009, 28, 305-308.	5.1	0
42	Absolutely conserved tryptophan in M49 family of peptidases contributes to catalysis and binding of competitive inhibitors. Bioorganic Chemistry, 2009, 37, 70-76.	4.1	24
43	Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta, 2009, 80, 651-655.	5.5	86
44	Functional tyrosine residue in the active center of human dipeptidyl peptidase III. Biological Chemistry, 2008, 389, 163-167.	2.5	19
45	Biomimetic Precipitation of Nanostructured Colloidal Calcite Particles by Enzyme-Catalyzed Reaction in the Presence of Magnesium Ions. Crystal Growth and Design, 2008, 8, 435-441.	3.0	37
46	Cytokinins in the perianth, carpels, and developing fruit of Helleborus niger L. Journal of Experimental Botany, 2006, 57, 2237-2247.	4.8	24
47	Influence of the Primary Structure of Enzymes on the Formation of CaCO3Polymorphs:Â A Comparison of Plant (Canavaliaensiformis)and Bacterial (Bacilluspasteurii)Ureases. Langmuir, 2005, 21, 8876-8882.	3.5	81
48	X-ray Structures of the Leucine-binding Protein Illustrate Conformational Changes and the Basis of Ligand Specificity. Journal of Biological Chemistry, 2004, 279, 8747-8752.	3.4	72
49	Silver nanoparticles as antimicrobial agent: a case study on E. coli as aÂmodel for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275, 177-182.	9.4	4,925
50	Chemisorptions of bacterial receptors for hydrophobic amino acids and sugars on gold for biosensor applications: a surface plasmon resonance study of genetically engineered proteins. Biosensors and Bioelectronics, 2003, 19, 249-259.	10.1	24
51	Insight into the stability of the hydrophobic binding proteins ofescherichia coli: Assessing the proteins for use as biosensors. Proteins: Structure, Function and Bioinformatics, 2003, 53, 273-281.	2.6	6
52	¹⁹ F NMR Studies of the Leucine-Isoleucine-Valine Binding Protein: Evidence That a Closed Conformation Exists in Solution. Journal of Biomolecular Structure and Dynamics, 2003, 21, 235-246.	3.5	19
53	19F NMR study of the leucine-specific binding protein of Escherichia coli: mutagenesis and assignment of the 5-fluorotryptophan-labeled residues. Protein Engineering, Design and Selection, 2002, 15, 855-859.	2.1	21
54	Developing fruit direct post-floral morphogenesis in Helleborus niger L Journal of Experimental Botany, 2002, 53, 1949-1957.	4.8	33

#	Article	IF	CITATIONS
55	Exploring the Role of Amino Acid-18 of the Leucine Binding Proteins of <i>E. coli</i> . Journal of Biomolecular Structure and Dynamics, 2002, 20, 381-387.	3.5	10
56	Correlation of structural and physico-chemical parameters with the bioactivity of alkylated derivatives of indole-3-acetic acid, a phytohormone (auxin). Acta Crystallographica Section B: Structural Science, 2000, 56, 94-111.	1.8	25
57	Fruit initiation in Helleborus niger L. triggers chloroplast formation and photosynthesis in the perianth. Journal of Plant Physiology, 2000, 157, 357-364.	3.5	33