Caroline Menard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534248/publications.pdf

Version: 2024-02-01

147801 155660 5,304 58 31 55 citations h-index g-index papers 65 65 65 7403 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Social stress induces neurovascular pathology promoting depression. Nature Neuroscience, 2017, 20, 1752-1760.	14.8	617
2	Sex-specific transcriptional signatures in human depression. Nature Medicine, 2017, 23, 1102-1111.	30.7	532
3	Neuroimmune mechanisms of depression. Nature Neuroscience, 2015, 18, 1386-1393.	14.8	415
4	Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 2016, 321, 138-162.	2.3	383
5	Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress. Journal of Neuroscience, 2015, 35, 16362-16376.	3.6	308
6	Neuroprotective action of resveratrol. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1195-1201.	3.8	291
7	Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience. Neuropsychopharmacology, 2017, 42, 62-80.	5 . 4	241
8	Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiology of Stress, 2016, 4, 15-22.	4.0	198
9	Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 2016, 534, 688-692.	27.8	193
10	Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3326-3336.	7.1	190
11	Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nature Communications, 2018, 9, 477.	12.8	185
12	Establishment of a repeated social defeat stress model in female mice. Scientific Reports, 2017, 7, 12838.	3.3	176
13	Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nature Neuroscience, 2020, 23, 638-650.	14.8	98
14	Successful Cognitive Aging in Rats: A Role for mGluR5 Glutamate Receptors, Homer 1 Proteins and Downstream Signaling Pathways. PLoS ONE, 2012, 7, e28666.	2.5	87
15	VGF function in depression and antidepressant efficacy. Molecular Psychiatry, 2018, 23, 1632-1642.	7.9	84
16	Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2018, 58, 411-428.	9.4	82
17	Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nature Communications, 2022, 13, 164.	12.8	75
18	Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Frontiers in Cellular Neuroscience, 2013, 7, 281.	3.7	70

#	Article	IF	CITATIONS
19	Group 1 Metabotropic Glutamate Receptor Function and Its Regulation of Learning and Memory in the Aging Brain. Frontiers in Pharmacology, 2012, 3, 182.	3.5	69
20	Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. European Journal of Neuroscience, 2021, 53, 183-221.	2.6	68
21	Multidimensional Predictors of Susceptibility and Resilience to Social Defeat Stress. Biological Psychiatry, 2019, 86, 483-491.	1.3	64
22	Cell-type-specific role for nucleus accumbens neuroligin-2 in depression and stress susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1111-1116.	7.1	61
23	Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens. Neuroscience, 2017, 350, 180-189.	2.3	56
24	Inflammationâ€driven brain and gut barrier dysfunction in stress and mood disorders. European Journal of Neuroscience, 2022, 55, 2851-2894.	2.6	54
25	Cell-Type-Specific Role of î"FosB in Nucleus Accumbens In Modulating Intermale Aggression. Journal of Neuroscience, 2018, 38, 5913-5924.	3.6	52
26	Parkinson's Disease-Linked LRRK2-G2019S Mutation Alters Synaptic Plasticity and Promotes Resilience to Chronic Social Stress in Young Adulthood. Journal of Neuroscience, 2018, 38, 9700-9711.	3.6	51
27	Depression and Social Defeat Stress Are Associated with Inhibitory Synaptic Changes in the Nucleus Accumbens. Journal of Neuroscience, 2020, 40, 6228-6233.	3.6	50
28	Impaired structural hippocampal plasticity is associated with emotional and memory deficits in the olfactory bulbectomized rat. Neuroscience, 2013, 236, 233-243.	2.3	47
29	Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus, 2004, 14, 319-325.	1.9	36
30	Integrative Analysis of Sex-Specific microRNA Networks Following Stress in Mouse Nucleus Accumbens. Frontiers in Molecular Neuroscience, 2016, 9, 144.	2.9	35
31	Role of Monocyte-Derived MicroRNA106bâ^1⁄425 in Resilience to Social Stress. Biological Psychiatry, 2019, 86, 474-482.	1.3	35
32	AMPA receptorâ€mediated cell death is reduced by docosahexaenoic acid but not by eicosapentaenoic acid in area CA1 of hippocampal slice cultures. Journal of Neuroscience Research, 2009, 87, 876-886.	2.9	34
33	Sex differences in the blood–brain barrier: Implications for mental health. Frontiers in Neuroendocrinology, 2022, 65, 100989.	5.2	31
34	Glutamate presynaptic vesicular transporter and postsynaptic receptor levels correlate with spatial memory status in aging rat models. Neurobiology of Aging, 2015, 36, 1471-1482.	3.1	30
35	AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2and 5-lipoxygenase activities. Hippocampus, 2005, 15, 370-380.	1.9	28
36	Genomic and proteomic strategies to identify novel targets potentially involved in learning and memory. Trends in Pharmacological Sciences, 2011, 32, 43-52.	8.7	28

3

#	Article	IF	CITATIONS
37	Knockdown of Prodynorphin Gene Prevents Cognitive Decline, Reduces Anxiety, and Rescues Loss of Group 1 Metabotropic Glutamate Receptor Function in Aging. Journal of Neuroscience, 2013, 33, 12792-12804.	3.6	26
38	Possible Role of Dynorphins in Alzheimer's Disease and Age-Related Cognitive Deficits. Neurodegenerative Diseases, 2014, 13, 82-85.	1.4	25
39	The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline. Current Biology, 2018, 28, 1079-1089.e4.	3.9	20
40	A novel role for calcium-independent phospholipase A2 in \hat{l}_{\pm} -amino-3-hydroxy-5-methylisoxazole-propionate receptor regulation during long-term potentiation. European Journal of Neuroscience, 2006, 23, 505-513.	2.6	18
41	The immune marker CD68 correlates with cognitive impairment in normally aged rats. Neurobiology of Aging, 2013, 34, 1971-1976.	3.1	18
42	Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging. Frontiers in Aging Neuroscience, 2014, 6, 81.	3.4	17
43	Signaling Pathways Relevant to Cognition-Enhancing Drug Targets. Handbook of Experimental Pharmacology, 2015, 228, 59-98.	1.8	17
44	Phosphorylation of AMPA receptor subunits is differentially regulated by phospholipase A2 inhibitors. Neuroscience Letters, 2005, 389, 51-56.	2.1	16
45	LRRK2 mutation alters behavioral, synaptic, and nonsynaptic adaptations to acute social stress. Journal of Neurophysiology, 2020, 123, 2382-2389.	1.8	16
46	Neuromodulatory effect of interleukin $1\hat{l}^2$ in the dorsal raphe nucleus on individual differences in aggression. Molecular Psychiatry, 2022, 27, 2563-2579.	7.9	14
47	Strain-related variations of AMPA receptor modulation by calcium-dependent mechanisms in the hippocampus: contribution of lipoxygenase metabolites of arachidonic acid. Brain Research, 2004, 1010, 134-143.	2.2	12
48	Inflamed Astrocytes: A Path to Depression Led by Menin. Neuron, 2018, 100, 511-513.	8.1	11
49	Central and peripheral stress-induced epigenetic mechanisms of resilience. Current Opinion in Psychiatry, 2021, 34, 1-9.	6.3	9
50	Calciumâ€independent phospholipase A ₂ influences AMPAâ€mediated toxicity of hippocampal slices by regulating the GluR1 subunit in synaptic membranes. Hippocampus, 2007, 17, 1109-1120.	1.9	8
51	Non-invasive chemogenetics. Nature Biomedical Engineering, 2018, 2, 467-468.	22.5	4
52	An Indigenous Lens on Priorities for the Canadian Brain Research Strategy. Canadian Journal of Neurological Sciences, 2023, 50, 96-98.	0.5	4
53	87. Social Stress Induces Neurovascular Pathology Promoting Immune Infiltration and Depression. Biological Psychiatry, 2018, 83, S36.	1.3	3
54	The Canadian Brain Research Strategy: A Focus on Early Career Researchers. Canadian Journal of Neurological Sciences, 2022, 49, 168-170.	0.5	1

#	Article	IF	CITATIONS
55	O4-09-03: LOW HIPPOCAMPAL PRODYNORPHIN LEVELS ARE ASSOCIATED WITH MAINTENANCE OF MEMORY IN VARIOUS AGING RODENT MODELS. , 2014, 10, P269-P269.		0
56	86. Role of the Epigenetic Agent Acetyl-L-Carnitine as Gating Biomarker in Depression and Influences of Childhood Trauma. Biological Psychiatry, 2018, 83, S35-S36.	1.3	0
57	201. Stress Resilience vs. Vulnerability in Mood disorders, an Integrative Biological Approach. Biological Psychiatry, 2019, 85, S83-S84.	1.3	0
58	Social Stress Induces Blood-Brain Barrier Leakiness and Molecular Alterations Promoting Depression or Stress Resilience. Biological Psychiatry, 2020, 87, S14-S15.	1.3	0