
## Alvaro Ortega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534043/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The role of solute binding proteins in signal transduction. Computational and Structural<br>Biotechnology Journal, 2021, 19, 1786-1805.                                                                   | 4.1 | 34        |
| 2  | Bacterial Sirtuins Overview: An Open Niche to Explore. Frontiers in Microbiology, 2021, 12, 744416.                                                                                                       | 3.5 | 10        |
| 3  | Chemoreceptors with C-terminal pentapeptides for CheR and CheB binding are abundant in bacteria that maintain host interactions. Computational and Structural Biotechnology Journal, 2020, 18, 1947-1955. | 4.1 | 4         |
| 4  | How Bacterial Chemoreceptors Evolve Novel Ligand Specificities. MBio, 2020, 11, .                                                                                                                         | 4.1 | 52        |
| 5  | Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. International<br>Journal of Molecular Sciences, 2019, 20, 5156.                                                      | 4.1 | 19        |
| 6  | The Molecular Mechanism of Nitrate Chemotaxis via Direct Ligand Binding to the PilJ Domain of McpN.<br>MBio, 2019, 10, .                                                                                  | 4.1 | 40        |
| 7  | The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Scientific Reports, 2018, 8, 2102.                                    | 3.3 | 35        |
| 8  | High-Throughput Screening to Identify Chemoreceptor Ligands. Methods in Molecular Biology, 2018,<br>1729, 291-301.                                                                                        | 0.9 | 20        |
| 9  | Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges.<br>International Journal of Molecular Sciences, 2018, 19, 3755.                                                  | 4.1 | 19        |
| 10 | Structural Basis for Polyamine Binding at the dCACHE Domain of the McpU Chemoreceptor from Pseudomonas putida. Journal of Molecular Biology, 2018, 430, 1950-1963.                                        | 4.2 | 33        |
| 11 | Methylation of Proteins: Biochemistry and Functional Consequences. , 2018, , 571-584.                                                                                                                     |     | 0         |
| 12 | Crystallohydrodynamics of IgC. , 2018, , 1-8.                                                                                                                                                             |     | 0         |
| 13 | Sensory Repertoire of Bacterial Chemoreceptors. Microbiology and Molecular Biology Reviews, 2017, 81, .                                                                                                   | 6.6 | 158       |
| 14 | Purification and characterization of Pseudomonas aeruginosa LasR expressed in acyl-homoserine lactone free Escherichia coli cultures. Protein Expression and Purification, 2017, 130, 107-114.            | 1.3 | 12        |
| 15 | Metabolic Value Chemoattractants Are Preferentially Recognized at Broad Ligand Range<br>Chemoreceptor of Pseudomonas putida KT2440. Frontiers in Microbiology, 2017, 8, 990.                              | 3.5 | 34        |
| 16 | Hydrophobic Modifications of Biomolecules: An Introduction. , 2017, , 1-10.                                                                                                                               |     | 0         |
| 17 | Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis<br>Toward α-Ketoglutarate. Frontiers in Microbiology, 2016, 7, 1937.                                    | 3.5 | 35        |
| 18 | <scp>McpQ</scp> is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environmental Microbiology, 2016, 18, 3284-3295.                                         | 3.8 | 39        |

ALVARO ORTEGA

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa.<br>Scientific Reports, 2016, 6, 28967.                                                                         | 3.3  | 62        |
| 20 | So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals. Communicative and Integrative Biology, 2016, 9, e1156832.                  | 1.4  | 11        |
| 21 | Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling, 2016, 9, ra1.                                                       | 3.6  | 106       |
| 22 | Identification of ligands for bacterial sensor proteins. Current Genetics, 2016, 62, 143-147.                                                                                                                | 1.7  | 8         |
| 23 | Multiple signals modulate the activity of the complex sensor kinase <scp>T</scp> od <scp>S</scp> .<br>Microbial Biotechnology, 2015, 8, 103-115.                                                             | 4.2  | 12        |
| 24 | FAK dimerization controls its kinase-dependent functions at focal adhesions. EMBO Journal, 2014, 33, 356-370.                                                                                                | 7.8  | 101       |
| 25 | Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography.<br>Carbohydrate Polymers, 2014, 102, 223-230.                                                           | 10.2 | 28        |
| 26 | The HBM domain: Introducing bimodularity to bacterial sensing. Protein Science, 2014, 23, 332-336.                                                                                                           | 7.6  | 27        |
| 27 | Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus<br>thermophilus coenzyme B12-based photosensory regulator. European Biophysics Journal, 2013, 42,<br>463-476. | 2.2  | 31        |
| 28 | Mechanisms of Site-Specific Functions of Focal Adhesion Kinase. Biophysical Journal, 2013, 104, 609a.                                                                                                        | 0.5  | 1         |
| 29 | Prediction of Hydrodynamic and Other Solution Properties of Partially Disordered Proteins with a<br>Simple, Coarse-Grained Model. Journal of Chemical Theory and Computation, 2013, 9, 1678-1685.            | 5.3  | 23        |
| 30 | Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the nonâ€protein<br>amino acid gammaâ€aminobutyrate ( <scp>GABA</scp> ). Molecular Microbiology, 2013, 88, 1230-1243.           | 2.5  | 87        |
| 31 | HYDRO Suite of Computer Programs for Solution Properties of Rigid Macromolecules. , 2013, ,<br>1002-1006.                                                                                                    |      | 1         |
| 32 | Crystallohydrodynamics of IgG. , 2013, , 397-403.                                                                                                                                                            |      | 0         |
| 33 | HYDFIT and Related Packages for Linear Molecules. , 2013, , 998-1002.                                                                                                                                        |      | 0         |
| 34 | Characterization of low molecular mass thermosensitive diblock copolymers and their self-assembly by means of analytical ultracentrifugation. Colloid and Polymer Science, 2012, 290, 297-306.               | 2.1  | 4         |
| 35 | Hydrodynamic Properties of Wormlike Macromolecules: Monte Carlo Simulation and Global Analysis of Experimental Data. Macromolecules, 2011, 44, 5788-5797.                                                    | 4.8  | 38        |
| 36 | Prediction of Hydrodynamic and Other Solution Properties of Rigid Proteins from Atomic- and<br>Residue-Level Models. Biophysical Journal, 2011, 101, 892-898.                                                | 0.5  | 569       |

ALVARO ORTEGA

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties. Methods, 2011, 54, 115-123.                                  | 3.8  | 11        |
| 38 | Brownian dynamics simulation of analytical ultracentrifugation experiments. BMC Biophysics, 2011, 4, 6.                                                                                                                             | 4.4  | 10        |
| 39 | Multi-scale calculation and global-fit analysis of hydrodynamic properties of biological<br>macromolecules: determination of the overall conformation of antibody IgG molecules. European<br>Biophysics Journal, 2010, 39, 361-370. | 2.2  | 12        |
| 40 | Intrinsic viscosity of bead models for macromolecules and nanoparticles. European Biophysics<br>Journal, 2010, 39, 381-388.                                                                                                         | 2.2  | 20        |
| 41 | Methods and Tools for the Prediction of Hydrodynamic Coefficients and Other Solution Properties<br>of Flexible Macromolecules in Solution. A Tutorial Minireview. Macromolecular Bioscience, 2010, 10,<br>721-730.                  | 4.1  | 9         |
| 42 | Analytical Ultracentrifugation Studies of Phage ϕ29 Protein p6 Binding to DNA. Journal of Molecular<br>Biology, 2009, 385, 1616-1629.                                                                                               | 4.2  | 11        |
| 43 | SIMUFLEX: Algorithms and Tools for Simulation of the Conformation and Dynamics of Flexible<br>Molecules and Nanoparticles in Dilute Solution. Journal of Chemical Theory and Computation, 2009, 5,<br>2606-2618.                    | 5.3  | 30        |
| 44 | Molecular Flexibility of Methylcelluloses of Differing Degree of Substitution by Combined Sedimentation and Viscosity Analysis. Macromolecular Bioscience, 2008, 8, 1108-1115.                                                      | 4.1  | 33        |
| 45 | Global hydrodynamic analysis of the molecular flexibility of galactomannans. Carbohydrate<br>Polymers, 2008, 72, 356-360.                                                                                                           | 10.2 | 44        |
| 46 | Global conformation analysis of irradiated xyloglucans. Carbohydrate Polymers, 2008, 74, 845-851.                                                                                                                                   | 10.2 | 49        |
| 47 | Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis. Food<br>Hydrocolloids, 2008, 22, 1435-1442.                                                                                               | 10.7 | 78        |
| 48 | Characterization of the Control Catabolite Protein of Gluconeogenic Genes Repressor by<br>Fluorescence Cross-Correlation Spectroscopy and Other Biophysical Approaches. Biophysical Journal,<br>2008, 95, 4403-4415.                | 0.5  | 15        |
| 49 | Improved Calculation of Rotational Diffusion and Intrinsic Viscosity of Bead Models for<br>Macromolecules and Nanoparticles. Journal of Physical Chemistry B, 2007, 111, 955-961.                                                   | 2.6  | 141       |
| 50 | Equivalent Radii and Ratios of Radii from Solution Properties as Indicators of Macromolecular<br>Conformation, Shape, and Flexibility. Biomacromolecules, 2007, 8, 2464-2475.                                                       | 5.4  | 86        |
| 51 | Fructose-1,6-bisphosphate Acts Both as an Inducer and as a Structural Cofactor of the Central Glycolytic Genes Repressor (CggR). Biochemistry, 2007, 46, 14996-15008.                                                               | 2.5  | 25        |
| 52 | Inducer-Modulated Cooperative Binding of the Tetrameric CggR Repressor to Operator DNA.<br>Biophysical Journal, 2007, 92, 3215-3227.                                                                                                | 0.5  | 30        |
| 53 | Solution Conformation of Wild-Type and Mutant IgG3 and IgG4 Immunoglobulins Using<br>Crystallohydrodynamics: Possible Implications for Complement Activation. Biophysical Journal, 2007,<br>93, 3733-3744.                          | 0.5  | 59        |
| 54 | Crystallohydrodynamics of Protein Assemblies: Combining Sedimentation, Viscometry, and X-Ray<br>Scattering. Biophysical Journal, 2006, 91, 1688-1697.                                                                               | 0.5  | 17        |

ALVARO ORTEGA

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | MULTIHYDRO and MONTEHYDRO: Conformational search and Monte Carlo calculation of solution properties of rigid or flexible bead models. Biophysical Chemistry, 2005, 116, 121-128.                                                                | 2.8  | 27        |
| 56 | Efficient, Accurate Calculation of Rotational Diffusion and NMR Relaxation of Globular Proteins<br>from Atomic-Level Structures and Approximate Hydrodynamic Calculations. Journal of the American<br>Chemical Society, 2005, 127, 12764-12765. | 13.7 | 26        |
| 57 | Studying Antibody Conformations by Ultracentrifugation and Hydrodynamic Modeling. , 2004, 248, 93-114.                                                                                                                                          |      | 7         |
| 58 | Calculation of the solution properties of flexible macromolecules: methods and applications.<br>European Biophysics Journal, 2003, 32, 477-486.                                                                                                 | 2.2  | 35        |
| 59 | Estimating domain orientation of two human antibody IgG4 chimeras by crystallohydrodynamics.<br>European Biophysics Journal, 2003, 32, 503-510.                                                                                                 | 2.2  | 13        |
| 60 | Hydrodynamic properties of rodlike and disklike particles in dilute solution. Journal of Chemical Physics, 2003, 119, 9914-9919.                                                                                                                | 3.0  | 279       |
| 61 | Multiple Linear Least-Squares Fits with a Common Intercept: Determination of the Intrinsic Viscosity of Macromolecules in Solution. Journal of Chemical Education, 2003, 80, 1036.                                                              | 2.3  | 13        |
| 62 | Calculation of hydrodynamic properties of small nucleic acids from their atomic structure. Nucleic<br>Acids Research, 2002, 30, 1782-1788.                                                                                                      | 14.5 | 73        |
| 63 | Use of the sedimentation coefficient for modelling antibodies. Refinements to the crystallohydrodynamics approach. , 0, , 113-118.                                                                                                              |      | 1         |