Abdelilah Slaoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534035/publications.pdf

Version: 2024-02-01

73 papers 1,005 citations

17 h-index

471061

30 g-index

74 all docs

74 docs citations

74 times ranked

1447 citing authors

#	Article	IF	CITATIONS
1	Optical and structural properties of Nd doped SnO ₂ powder fabricated by the sol–gel method. Journal of Materials Chemistry C, 2014, 2, 8235-8243.	2.7	80
2	Advanced Inorganic Materials for Photovoltaics. MRS Bulletin, 2007, 32, 211-218.	1.7	69
3	Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering. Journal of Applied Physics, 2010, 107, 123522.	1.1	63
4	Structural and photoluminescence properties of ZnO thin films prepared by sol-gel process. Journal of Applied Physics, 2008, 104, .	1.1	56
5	Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices. Solar Energy Materials and Solar Cells, 2016, 145, 134-141.	3.0	55
6	Photoluminescence of Nd-doped SnO2 thin films. Applied Physics Letters, 2012, 100, .	1.5	50
7	Optical properties of ZnO thin films prepared by sol–gel process. Microelectronics Journal, 2009, 40, 239-241.	1.1	41
8	Tuning the chemical properties of europium complexes as downshifting agents for copper indium gallium selenide solar cells. Journal of Materials Chemistry A, 2017, 5, 14031-14040.	5.2	39
9	Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiN x :H films. Nanoscale Research Letters, 2011, 6, 178.	3.1	35
10	Band-Gap Tuning in Ferroelectric Bi ₂ FeCrO ₆ Double Perovskite Thin Films. Journal of Physical Chemistry C, 2018, 122, 1070-1077.	1.5	34
11	Tuning photovoltaic response in Bi ₂ FeCrO ₆ films by ferroelectric poling. Nanoscale, 2018, 10, 13761-13766.	2.8	33
12	Hf-based high-k materials for Si nanocrystal floating gate memories. Nanoscale Research Letters, 2011, 6, 172.	3.1	32
13	Efficient energy transfer from ZnO to Nd ³⁺ ions in Nd-doped ZnO films deposited by magnetron reactive sputtering. Journal of Materials Chemistry C, 2014, 2, 9182-9188.	2.7	29
14	Deposition Time Effect on the Physical Properties of Cu2ZnSnS4 (CZTS) Thin Films Obtained by Electrodeposition Route onto Mo-coated Glass Substrates. Energy Procedia, 2015, 84, 127-133.	1.8	29
15	Structural, optical, spectroscopic and electrical properties of Mo-doped ZnO thin films grown by radio frequency magnetron sputtering. Thin Solid Films, 2014, 566, 61-69.	0.8	28
16	Luminescent Properties and Energy Transfer in Pr ³⁺ Doped and Pr ³⁺ -Yb ³⁺ Co-doped ZnO Thin Films. Journal of Physical Chemistry C, 2014, 118, 13775-13780.	1.5	25
17	Investigation of LaVO3 based compounds as a photovoltaic absorber. Solar Energy, 2018, 162, 1-7.	2.9	22
18	Sodium doping mechanism on sol-gel processed kesterite Cu2ZnSnS4 thin films. Superlattices and Microstructures, 2018, 120, 747-752.	1.4	18

#	Article	IF	CITATIONS
19	Enhancement of Copper Indium Gallium Selenide Solar Cells Using Europium Complex as Photon Downshifter. Advanced Optical Materials, 2016, 4, 1846-1853.	3.6	17
20	Photon management properties of Yb-doped SnO ₂ nanoparticles synthesized by the sol–gel technique. Physical Chemistry Chemical Physics, 2019, 21, 21407-21417.	1.3	17
21	First Solar Cells on Exfoliated Silicon Foils Obtained at Room Temperature by the SLIM-Cut Technique Using an Epoxy Layer. IEEE Journal of Photovoltaics, 2016, 6, 1115-1122.	1.5	15
22	Thickness Dependence and Strain Effects in Ferroelectric Bi ₂ FeCrO ₆ Thin Films. ACS Applied Energy Materials, 2019, 2, 8550-8559.	2.5	15
23	Effect of ion implantation energy for the synthesis of Ge nanocrystals in SiN films with HfO2/SiO2 stack tunnel dielectrics for memory application. Nanoscale Research Letters, 2011, 6, 177.	3.1	14
24	Insight into photon conversion of Nd $<$ sup $>3+<$ /sup $>$ doped low temperature grown p and n type tin oxide thin films. RSC Advances, 2016, 6, 67157-67165.	1.7	13
25	Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells. Crystals, 2020, 10, 731.	1.0	13
26	Silicon Clathrate Films for Photovoltaic Applications. Journal of Physical Chemistry C, 2020, 124, 14972-14977.	1.5	13
27	The New Copper Composite of Pastes for Si Solar Cells Front Electrode Application. Energy Procedia, 2016, 92, 962-970.	1.8	12
28	Structural, electrical and optical properties of sprayed Nd–F codoped ZnO thin films. Journal of Sol-Gel Science and Technology, 2015, 73, 557-562.	1.1	11
29	EullI -Based Nanolayers as Highly Efficient Downshifters for CIGS Solar Cells. European Journal of Inorganic Chemistry, 2017, 2017, 5318-5326.	1.0	10
30	Cu(InGa)Se2 Solar Cell Efficiency Enhancement Using a Yb-Doped SnOx Photon Converting Layer. ACS Applied Energy Materials, 2019, 2, 5094-5102.	2.5	10
31	Nd-Doped SnO2 and ZnO for Application in Cu(InGa)Se2 Solar Cells. Science of Advanced Materials, 2017, 9, 2114-2120.	0.1	10
32	Yb-doped zinc tin oxide thin film and its application to Cu(InGa)Se2 solar cells. Journal of Alloys and Compounds, 2020, 815, 152360.	2.8	9
33	Photon management properties of rare-earth (Nd,Yb,Sm)-doped CeO ₂ films prepared by pulsed laser deposition. Physical Chemistry Chemical Physics, 2016, 18, 2527-2534.	1.3	7
34	Properties of Yb-added ZnO (Yb:ZnO) films as an energy-conversion layer on polycrystalline silicon solar cells. Materials Chemistry and Physics, 2021, 265, 124513.	2.0	7
35	Multicrystalline silicon solar cells from RST ribbon process. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2092-2096.	0.8	6
36	Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films. Applied Surface Science, 2018, 441, 49-54.	3.1	6

#	Article	IF	Citations
37	Light emitting mechanisms in Siâ€rich SiN _x films with different silicon nitride stoichiometry. Physica Status Solidi (B): Basic Research, 2017, 254, 1600670.	0.7	5
38	Silicon Tunnel Junctions Produced by Ion Implantation and Diffusion Processes for Tandem Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1436-1442.	1.5	5
39	Laser doping from spin-on sources for selective emitter silicon solar cells. , 2012, , .		4
40	Synthesis and characterization of silicon clathrates of type I Na8Si46 and type II NaxSi136 by thermal decomposition. Journal of Alloys and Compounds, 2022, 903, 163967.	2.8	4
41	SnO ₂ Films Elaborated by Radio Frequency Magnetron Sputtering as Potential Transparent Conducting Oxides Alternative for Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 170-177.	2.5	4
42	Polysilicon Films Formed On Alumina By Aluminium Induced Crystallization Of Amorphous Silicon. Materials Research Society Symposia Proceedings, 2006, 910, 1.	0.1	3
43	Silicon nanostructures in silicon oxynitride for PV application: effect of argon. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1878-1883.	0.8	3
44	Kesterite / wurtzite Cu <inf>2</inf> ZnSnS <inf>4</inf> nanocrystals: Synthesis and characterization for PV applications. , 2016, , .		3
45	Properties of Cu <inf>2</inf> ZnSnS <inf>4</inf> films elaborated by modified spray process., 2016,,.		3
46	Effect of ITO and Mo coated glass substrates on electrodeposited Cu <inf>2</inf> ZnSnS <inf>4</inf> thin films. , 2016, , .		3
47	High Energy Heavy Ions Irradiation of Thermal SiO2 Films on Si. Materials Research Society Symposia Proceedings, 1992, 279, 141.	0.1	2
48	Silicon Thin Film Homoepitaxy by Rapid Thermal Atmospheric-Pressure Chemical Vapor Deposition (RT-APCVD). Materials Research Society Symposia Proceedings, 1996, 429, 367.	0.1	2
49	Silicon Nanoclusters Embedded into Oxide Host for Non-Volatile Memory Applications. ECS Transactions, 2011, 35, 37-45.	0.3	2
50	Formation of silicon nanoparticles from high temperature annealed silicon rich silicon oxynitride films. Proceedings of SPIE, 2012, , .	0.8	2
51	Editorial: Desertec projectâ€"when science joins politics. Journal of Renewable and Sustainable Energy, 2012, 4, 010401.	0.8	2
52	Understanding Phenomena of Thin Silicon Film Crystallization on Aluminium Substrates. Energy Procedia, 2015, 84, 156-164.	1.8	2
53	Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals. Journal of Applied Physics, 2016, 119, 174303.	1.1	2
54	Study of sprayed CZTS thin films containing various copper content. , 2016, , .		2

#	Article	IF	CITATIONS
55	Study of hybrid organic–inorganic halide perovskite solar cells based on MAI[(PbI2)1â^'x(CuI)x] absorber layers and their long-term stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 20684-20697.	1.1	2
56	Rapid Thermal Dopants Diffusion and Surface Passivation for Silicon Solar Cells Applications. Materials Research Society Symposia Proceedings, 1996, 429, 127.	0.1	1
57	Ultra-Low energy Ion Implantation of Si into HfO2-based layers for Non Volatile Memory Applications. Materials Research Society Symposia Proceedings, 2009, 1160 , 1 .	0.1	1
58	Laser processing for thin film crystalline silicon solar cells. Proceedings of SPIE, 2012, , .	0.8	1
59	Comparison of picosecond laser sources for SiNx ablation with subsequent nickel silicide formation by excimer laser annealing (ELA) for high efficiency silicon solar cells. , 2013, , .		1
60	Charge Trapping in Hafnium Silicate Films with Modulated Composition and Enhanced Permittivity. Advanced Materials Research, 2013, 854, 125-133.	0.3	1
61	Absorption Enhancement in Thin-Film Solar Cells with Perforated Holes. Plasmonics, 2018, 13, 939-945.	1.8	1
62	Thickness effect on Cu <inf>2</inf> ZnSnS <inf>4</inf> properties using non-toxic and low-cost process. , 2016, , .		1
63	Photooxidation Of Implanted Silicon With Pulsed UV-Laser In Liquid Phase Regime. , 1989, 1022, 153.		0
64	Phosphorus Doping into Silicon Using ArF Excimer Laser. Materials Research Society Symposia Proceedings, 1989, 158, 281.	0.1	0
65	Phosphorus Gettering by Rapid Thermal Processing. Materials Research Society Symposia Proceedings, 1992, 262, 987.	0.1	0
66	Influence of the Ge Dose in Ion-implanted SiO2 Layers on the Related Nanocrystal-memory Properties. Materials Research Society Symposia Proceedings, 2006, 933, 1.	0.1	0
67	N-type thin-film polycrystalline-silicon solar cells using a seed layer approach. , 2009, , .		0
68	Ultra-Low Energy Ion Implantation of Si into HfO2 and HfSiO-based Structures for Non Volatile Memory Applications. Materials Research Society Symposia Proceedings, 2010, 1250, 1.	0.1	0
69	Bigger picture helps Alf Bjørseth focus on energy and materials projects for the future. MRS Bulletin, 2013, 38, 210-211.	1.7	0
70	High-k MNOS-Like Stacked Dielectrics for Non-Volatile Memory Application. Journal of Nano Research, 2016, 39, 121-133.	0.8	0
71	Macroporosity Enhancement of Scaffold Oxide Layers Using Selfâ€Assembled Polymer Beads for Photovoltaic Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700946.	0.8	0
72	EFFECT OF POTASSIUM CYANIDE ETCHING ON STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF Cu ₂ ZnSnS ₄ THIN FILMS DEPOSITED BY A MODIFIED SPRAY PROCESS. Surface Review and Letters, 2019, 26, 1950053.	0.5	O

ARTICLE IF CITATIONS
73 Photovoltaics: Advanced Inorganic Materials., 2021,, 5-16.