Hongshuai Hou

List of Publications by Citations

Source: https://exaly.com/author-pdf/1533666/hongshuai-hou-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 11,725 207 102 h-index g-index citations papers 6.99 11.3 14,702 221 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
207	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. <i>Advanced Materials</i> , 2015 , 27, 7861-6	24	892
206	Carbon Anode Materials for Advanced Sodium-Ion Batteries. Advanced Energy Materials, 2017, 7, 16028	892 1.8	649
205	Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries. <i>Advanced Science</i> , 2017 , 4, 1600243	13.6	356
204	Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 866-877	13	238
203	Graphene-Rich Wrapped Petal-Like Rutile TiO tuned by Carbon Dots for High-Performance Sodium Storage. <i>Advanced Materials</i> , 2016 , 28, 9391-9399	24	226
202	Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. Journal of Materials Chemistry A, 2015 , 3, 5648-5655	13	197
201	Tailoring Rod-Like FeSe2 Coated with Nitrogen-Doped Carbon for High-Performance Sodium Storage. <i>Advanced Functional Materials</i> , 2018 , 28, 1801765	15.6	196
200	One-Dimensional Rod-Like SbBBased Anode for High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials & District Materials & Distri</i>	9.5	193
199	Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. <i>Journal of Power Sources</i> , 2014 , 267, 888-900	8.9	191
198	Ti3+ Self-Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2015 , 25, 6793-6801	15.6	189
197	Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. <i>Nano Energy</i> , 2019 , 65, 104038	17.1	180
196	Advanced Hierarchical Vesicular Carbon Co-Doped with S, P, N for High-Rate Sodium Storage. <i>Advanced Science</i> , 2018 , 5, 1800241	13.6	177
195	Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. <i>Nano Energy</i> , 2018 , 48, 617-629	17.1	171
194	Hierarchical Hollow-Microsphere MetalBelenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1803035	21.8	171
193	Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 16189-96	9.5	170
192	Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. <i>ACS Applied Materials & Discrete States</i> , 2016, 8, 9142-51	9.5	159
191	Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. <i>Energy Storage Materials</i> , 2018 , 12, 310-323	19.4	144

(2019-2017)

190	Nitrogen Doped/Carbon Tuning Yolk-Like TiO2 and Its Remarkable Impact on Sodium Storage Performances. <i>Advanced Energy Materials</i> , 2017 , 7, 1600173	21.8	138
189	Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2971-2977	13	130
188	Layer-Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodium-Storage Anode. <i>Advanced Materials</i> , 2017 , 29, 1702372	24	128
187	Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery. <i>Advanced Functional Materials</i> , 2014 , 24, 4349-4356	15.6	126
186	H -Insertion Boosted & MnO for an Aqueous Zn-Ion Battery. <i>Small</i> , 2020 , 16, e1905842	11	126
185	Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. <i>Nanoscale</i> , 2018 , 11, 16-3:	37.7	126
184	Controllable Interlayer Spacing of Sulfur-Doped Graphitic Carbon Nanosheets for Fast Sodium-Ion Batteries. <i>Small</i> , 2017 , 13, 1700762	11	112
183	Controllable Chain-Length for Covalent Sulfur C arbon Materials Enabling Stable and High-Capacity Sodium Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1803478	21.8	110
182	An Asymmetric Ultracapacitors Utilizing £Co(OH)2/Co3O4 Flakes Assisted by Electrochemically Alternating Voltage. <i>Electrochimica Acta</i> , 2014 , 141, 234-240	6.7	108
181	Metal-Organic Framework-Derived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648	11	102
180	Alternating Voltage Introduced NiCo Double Hydroxide Layered Nanoflakes for an Asymmetric Supercapacitor. <i>ACS Applied Materials & Supercapacitor</i> , 7, 22741-4	9.5	99
179	Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 284, 227-235	8.9	94
178	High Ion-Conducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers. <i>Advanced Science</i> , 2018 , 5, 1700996	13.6	94
177	Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe@C Nanospheres for Ultrastable Sodium-Ion Storage. <i>ACS Applied Materials & District Materials & Distr</i>	9.5	93
176	A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. <i>Waste Management</i> , 2019 , 85, 529-537	8.6	92
175	Cube-shaped Porous Carbon Derived from MOF-5 as Advanced Material for Sodium-Ion Batteries. <i>Electrochimica Acta</i> , 2016 , 196, 413-421	6.7	92
174	Yolk-Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. <i>ACS Applied Materials & Documents (Materials & Documents)</i> 11, 10829-10840	9.5	90
173	Ultrafast Sodium Full Batteries Derived from X?Fe (X = Co, Ni, Mn) Prussian Blue Analogs. <i>Advanced Materials</i> , 2019 , 31, e1806092	24	90

172	Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries. <i>Chemistry of Materials</i> , 2017 , 29, 7313-7322	9.6	89
171	Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18944-18952	13	88
170	A kinetically well-matched full-carbon sodium-ion capacitor. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13540-13549	13	87
169	Multidimensional Evolution of Carbon Structures Underpinned by Temperature-Induced Intermediate of Chloride for Sodium-Ion Batteries. <i>Advanced Science</i> , 2018 , 5, 1800080	13.6	86
168	Heteroatom-doped carbon inlaid with Sb2X3 (XI≢IS, Se) nanodots for high-performance potassium-ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 385, 123838	14.7	85
167	Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16824-16830	13	84
166	The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property. <i>Energy Storage Materials</i> , 2019 , 16, 267-	·2 ¹⁸⁰⁴	83
165	Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. <i>Materials Chemistry and Physics</i> , 2019 , 223, 46-52	4.4	79
164	Investigation of the sodium ion pathway and cathode behavior in NaI/(PO)IIIIcombined via a first principles calculation. <i>Langmuir</i> , 2014 , 30, 12438-46	4	78
163	Rodlike SbSe Wrapped with Carbon: The Exploring of Electrochemical Properties in Sodium-Ion Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 34979-34989	9.5	78
162	Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries. <i>Nano-Micro Letters</i> , 2020 , 12, 16	19.5	74
161	Garnet Solid Electrolyte for Advanced All-Solid-State Li Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2000648	21.8	74
160	An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries. <i>Electrochimica Acta</i> , 2014 , 146, 328-334	6.7	73
159	Nickel Chelate Derived NiS2 Decorated with Bifunctional Carbon: An Efficient Strategy to Promote Sodium Storage Performance. <i>Advanced Functional Materials</i> , 2018 , 28, 1803690	15.6	72
158	N-rich carbon coated CoSnO3 derived from in situ construction of a CoMOF with enhanced sodium storage performance. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4839-4847	13	70
157	Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12591-12601	13	70
156	Pseudo-Bonding and Electric-Field Harmony for Li-Rich Mn-Based Oxide Cathode. <i>Advanced Functional Materials</i> , 2020 , 30, 2004302	15.6	70
155	N-Rich carbon-coated CoS ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. <i>Nanoscale</i> , 2018 , 10, 18786-18794	7.7	70

(2018-2015)

154	oltrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage. <i>Journal of Power Sources</i> , 2015 , 298, 241-248	8.9	67	
153	Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. <i>Electrochimica Acta</i> , 2019 , 299, 540-548	6.7	67	
152	An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 15764-70	3.6	66	
151	3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. <i>Electrochimica Acta</i> , 2014 , 149, 144-151	6.7	66	
150	Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. <i>Nano Energy</i> , 2021 , 83, 105854	17.1	66	
149	An electrochemical exploration of hollow NiCo 2 O 4 submicrospheres and its capacitive performances. <i>Journal of Power Sources</i> , 2015 , 287, 307-315	8.9	65	
148	Size-Tunable Olive-Like Anatase TiO Coated with Carbon as Superior Anode for Sodium-Ion Batteries. <i>Small</i> , 2016 , 12, 5554-5563	11	65	
147	Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. <i>Green Chemistry</i> , 2017 , 19, 4622-4632	10	65	
146	Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering. <i>Nano-Micro Letters</i> , 2020 , 12, 121	19.5	64	
145	Hierarchical NiS2 Modified with Bifunctional Carbon for Enhanced Potassium-Ion Storage. <i>Advanced Functional Materials</i> , 2019 , 29, 1903454	15.6	63	
144	Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries. <i>ACS Nano</i> , 2019 , 13, 10787-10797	16.7	62	
143	Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. <i>Energy Storage Materials</i> , 2020 , 27, 124-132	19.4	61	
142	Recent progress on electrolyte additives for stable lithium metal anode. <i>Energy Storage Materials</i> , 2020 , 32, 306-319	19.4	61	
141	Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. <i>Materials Chemistry and Physics</i> , 2019 , 229, 303-309	4.4	60	
140	Kilogram-Scale Synthesis and Functionalization of Carbon Dots for Superior Electrochemical Potassium Storage. <i>ACS Nano</i> , 2021 , 15, 6872-6885	16.7	60	
139	Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives. <i>Advanced Functional Materials</i> , 2021 , 31, 2005581	15.6	60	
138	The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode. <i>Journal of Power Sources</i> , 2017 , 366, 249-258	8.9	55	
137	Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. <i>Materials Chemistry and Physics</i> , 2018 , 203, 185-192	4.4	54	

136	High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion. <i>Electrochimica Acta</i> , 2014 , 146, 142-150	6.7	54
135	Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase. <i>Journal of Power Sources</i> , 2015 , 282, 358-367	8.9	51
134	Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 395, 125054	14.7	50
133	Electrochemically Exfoliated Phosphorene©raphene Hybrid for Sodium-Ion Batteries. <i>Small Methods</i> , 2019 , 3, 1800328	12.8	50
132	Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. <i>Nano Energy</i> , 2018 , 54, 26-38	17.1	50
131	Voltage-Induced High-Efficient In Situ Presodiation Strategy for Sodium Ion Capacitors. <i>Small Methods</i> , 2020 , 4, 1900763	12.8	49
130	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23550-23558	13	48
129	Surface-Driven Energy Storage Behavior of Dual-Heteroatoms Functionalized Carbon Material. <i>Advanced Functional Materials</i> , 2019 , 29, 1900941	15.6	47
128	Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17549-17552	13	47
127	Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries. <i>ACS Applied Materials & M</i>	9.5	47
126	3D Porous Carbon Encapsulated SnO2 Nanocomposite for Ultrastable Sodium Ion Batteries. <i>Electrochimica Acta</i> , 2016 , 214, 156-164	6.7	47
125	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683	20.1	47
124	Comprehensive Understanding of Sodium-Ion Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments. <i>Advanced Energy Materials</i> , 2021 , 11, 2003804	21.8	46
123	Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 159-65	3.6	45
122	Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. <i>Nanoscale</i> , 2020 , 12, 3677-3685	7.7	45
121	Size-Tunable Single-Crystalline Anatase TiO2 Cubes as Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2015 , 119, 3923-3930	3.8	45
120	Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. <i>Chemical Engineering Journal</i> , 2020 , 402, 125509	14.7	45
119	The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. <i>Science China Materials</i> , 2019 , 62, 1127-1138	7.1	44

(2021-2020)

118	Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. <i>Science Bulletin</i> , 2020 , 65, 1003-1012	10.6	44	
117	Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation. <i>RSC Advances</i> , 2017 , 7, 14152-14158	3.7	43	
116	Electrochemical Investigation of Natural Ore Molybdenite (MoS) as a First-Hand Anode for Lithium Storages. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 6378-6389	9.5	43	
115	Bi Dots Confined by Functional Carbon as High-Performance Anode for Lithium Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2000756	15.6	43	
114	Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24353-24360	13	42	
113	Sodium titanate cuboid as advanced anode material for sodium ion batteries. <i>Journal of Power Sources</i> , 2016 , 305, 200-208	8.9	42	
112	NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries. <i>Chemical Communications</i> , 2014 , 50, 8201-3	5.8	41	
111	Rose-like N-doped Porous Carbon for Advanced Sodium Storage. <i>Electrochimica Acta</i> , 2017 , 240, 24-30	6.7	39	
110	Mo-doped Gray Anatase TiO 2 : Lattice Expansion for Enhanced Sodium Storage. <i>Electrochimica Acta</i> , 2016 , 219, 227-234	6.7	36	
109	Functionalized carbon dots for advanced batteries. <i>Energy Storage Materials</i> , 2021 , 37, 8-39	19.4	35	
108	Interfacial challenges towards stable Li metal anode. <i>Nano Energy</i> , 2021 , 79, 105507	17.1	35	
107	Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. <i>New Journal of Chemistry</i> , 2017 , 41, 6693-6699	3.6	32	
106	Bi-Based Electrode Materials for Alkali Metal-Ion Batteries. Small, 2020, 16, e2004022	11	32	
105	Carbon materials for high-performance lithium-ion capacitor. <i>Current Opinion in Electrochemistry</i> , 2020 , 21, 31-39	7.2	32	
104	Exploration and Size Engineering from Natural Chalcopyrite to High-Performance Electrode Materials for Lithium-Ion Batteries. <i>ACS Applied Materials & Distributed Materials &</i>	9.5	32	
103	Dual Functions of Potassium Antimony(III)-Tartrate in Tuning Antimony/Carbon Composites for Long-Life Na-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1705744	15.6	30	
102	Advanced Battery-Type Anode Materials for High-Performance Sodium-Ion Capacitors. <i>Small Methods</i> , 2020 , 4, 2000401	12.8	30	
101	The development of carbon dots: From the perspective of materials chemistry. <i>Materials Today</i> , 2021 , 51, 188-188	21.8	30	

100	Chalcopyrite-Derived NaMO (M = Cu, Fe, Mn) Cathode: Tuning Impurities for Self-Doping. <i>ACS Applied Materials & Doping Interfaces</i> , 2020 , 12, 2432-2444	9.5	29
99	Electrochemically Alternating Voltage Induced Mn3O4/Graphite Powder Composite with Enhanced Electrochemical Performances for Lithium-ion Batteries. <i>Electrochimica Acta</i> , 2015 , 155, 157-163	6.7	27
98	Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage Systems. <i>ACS Applied Materials & Energy Storage</i> 10, 43669-43681	9.5	27
97	Natural stibnite ore (SbS) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage <i>RSC Advances</i> , 2019 , 9, 15210-15216	3.7	25
96	Revealing the activation effects of high valence cobalt in CoMoO4 towards highly reversible conversion. <i>Nano Energy</i> , 2020 , 68, 104333	17.1	25
95	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. <i>ACS Nano</i> , 2021 , 15, 6061-6104	16.7	25
94	Chem-Bonding and Phys-Trapping Se Electrode for Long-Life Rechargeable Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1809014	15.6	24
93	Nitrogen-doped Carbon Coated Na3V2(PO4)3 with Superior Sodium Storage Capability. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 459-466	2.2	24
92	Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. <i>Materials Letters</i> , 2014 , 128, 408-411	3.3	24
91	Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor. <i>Electrochimica Acta</i> , 2015 , 165, 198-205	6.7	23
90	High Sulfur-Doped Hard Carbon with Advanced Potassium Storage Capacity via a Molten Salt Method. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 30431-30437	9.5	23
89	Stabilizing Intermediate Phases via Efficient Entrapment Effects of Layered VS4/SnS@C Heterostructure for Ultralong Lifespan Potassium-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2103802	15.6	23
88	Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C-O-Fe oxygen-bridge bonds for enhanced sodium storages. <i>Materials Chemistry and Physics</i> , 2018 , 216, 58-63	4.4	23
87	Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1315-1323	7.8	22
86	Nanosizing Pd on 3D porous carbon frameworks as effective catalysts for selective phenylacetylene hydrogenation. <i>RSC Advances</i> , 2017 , 7, 15309-15314	3.7	21
85	Alternating Voltage Introduced [001]-Oriented \text{HMoO3 Microrods for High-Performance} Sodium-ion Batteries. <i>Electrochimica Acta</i> , 2017 , 245, 949-956	6.7	20
84	High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. <i>Science Bulletin</i> , 2021 , 66, 1858-1868	10.6	20
83	Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. <i>EScience</i> , 2022 ,		20

(2022-2017)

82	High-rate sodium ion anodes assisted by N-doped carbon sheets. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1130-1136	5.8	19
81	General Synthesis of Heteroatom-Doped Hierarchical Carbon toward Excellent Electrochemical Energy Storage. <i>Batteries and Supercaps</i> , 2019 , 2, 712-722	5.6	19
80	Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors. <i>Frontiers in Chemistry</i> , 2020 , 8, 43	5	19
79	Porous Carbon Induced Anatase TiO2Nanodots/Carbon Composites for High-Performance Sodium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A3117-A3125	3.9	19
78	Evaluating the influences of the sulfur content in precursors on the structure and sodium storage performances of carbon materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11488-11495	13	19
77	Carbon Dots Evoked Li Ion Dynamics for Solid State Battery. <i>Small</i> , 2021 , 17, e2102978	11	19
76	Rod-Like Sb2MoO6: Structure Evolution and Sodium Storage for Sodium-Ion Batteries. <i>Small Methods</i> , 2019 , 3, 1800533	12.8	18
75	Single Particle Electrochemistry of Collision. <i>Small</i> , 2019 , 15, e1804908	11	18
74	Electrochemically Modulated LiNi1/3Mn1/3Co1/3O2 Cathodes for Lithium-Ion Batteries. <i>Small Methods</i> , 2019 , 3, 1900065	12.8	17
73	An Electrochemically Anodic Study of Anatase TiO2 Tuned through Carbon-Coating for High-performance Lithium-ion Battery. <i>Electrochimica Acta</i> , 2015 , 164, 330-336	6.7	17
72	Alternating voltage induced ordered anatase TiO2 nanopores: An electrochemical investigation of sodium storage. <i>Journal of Power Sources</i> , 2016 , 336, 196-202	8.9	17
71	Activated Flake Graphite Coated with Pyrolysis Carbon as Promising Anode for Lithium Storage. <i>Electrochimica Acta</i> , 2016 , 196, 405-412	6.7	17
70	Interfacially Redistributed charge for robust lithium metal anode. <i>Nano Energy</i> , 2021 , 87, 106212	17.1	17
69	Evaluating the Storage Behavior of Superior Low-Cost Anode Material from Biomass for High-Rate Sodium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1431-A1437	3.9	16
68	BiMoO Microsphere with Double-Polyaniline Layers toward Ultrastable Lithium Energy Storage by Reinforced Structure. <i>Inorganic Chemistry</i> , 2019 , 58, 6410-6421	5.1	16
67	Alternating voltage induced porous Co3O4 sheets: an exploration of its supercapacity properties. <i>RSC Advances</i> , 2015 , 5, 177-183	3.7	16
66	Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable ZnBir batteries. <i>Nano Energy</i> , 2021 , 91, 106675	17.1	16
65	Graphene quantum dots enable dendrite-free zinc ion battery. <i>Nano Energy</i> , 2022 , 92, 106752	17.1	16

64	Copper-substituted NaxMO2 (M = Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation. <i>Chemical Engineering Journal</i> , 2021 , 406, 126830	14.7	16
63	Element substitution of a spinel LiMn2O4 cathode. <i>Journal of Materials Chemistry A</i> ,	13	16
62	TiO2 nanosheets anchoring on carbon nanotubes for fast sodium storage. <i>Electrochimica Acta</i> , 2018 , 283, 1514-1524	6.7	15
61	Nano-confined Mo2C Particles Embedded in a Porous Carbon Matrix: A Promising Anode for Ultra-stable Na Storage. <i>ChemElectroChem</i> , 2017 , 4, 2669-2676	4.3	15
60	Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. <i>Chemical Communications</i> , 2021 , 57, 528-531	5.8	15
59	Size-Tunable Natural Mineral-Molybdenite for Lithium-Ion Batteries Toward: Enhanced Storage Capacity and Quicken Ions Transferring. <i>Frontiers in Chemistry</i> , 2018 , 6, 389	5	15
58	Revealing dual capacitive mechanism of carbon cathode toward ultrafast quasi-solid-state lithium ion capacitors. <i>Journal of Energy Chemistry</i> , 2021 , 60, 209-221	12	15
57	Constructing hierarchical sulfur-doped nitrogenous carbon nanosheets for sodium-ion storage. <i>Nanotechnology</i> , 2017 , 28, 445604	3.4	13
56	Solid Solution Metal Chalcogenides for Sodium-Ion Batteries: The Recent Advances as Anodes. <i>Small</i> , 2021 , 17, e2101058	11	13
55	Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors. <i>Chemical Engineering Journal</i> , 2021 , 420, 129647	14.7	13
54	Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. <i>New Journal of Chemistry</i> , 2017 , 41, 13724-13731	3.6	12
53	Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 293-302	12	12
52	High-Throughput Production of Cheap Mineral-Based Heterostructures for High Power Sodium Ion Capacitors. <i>Advanced Functional Materials</i> ,2110476	15.6	12
51	Electrochemically intercalated intermediate induced exfoliation of few-layer MoS2 from molybdenite for long-life sodium storage. <i>Science China Materials</i> , 2021 , 64, 115-127	7.1	12
50	Reversible OP4 phase in P2Na2/3Ni1/3Mn2/3O2 sodium ion cathode. <i>Journal of Power Sources</i> , 2021 , 508, 230324	8.9	12
49	Advanced Pre-Diagnosis Method of Biomass Intermediates Toward High Energy Dual-Carbon Potassium-Ion Capacitor. <i>Advanced Energy Materials</i> , 2022 , 12, 2103221	21.8	12
48	Molecularly Compensated Pre-Metallation Strategy for Metal-Ion Batteries and Capacitors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17070-17079	16.4	11
47	A graphite-modified natural stibnite mineral as a high-performance anode material for sodium-ion storage <i>RSC Advances</i> , 2019 , 9, 28953-28960	3.7	11

46	High-Yield Carbon Dots Interlayer for Ultra-Stable Zinc Batteries. Advanced Energy Materials, 2200665	21.8	11
45	Li4Ti5O12 quantum dot decorated carbon frameworks from carbon dots for fast lithium ion storage. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1761-1767	7.8	10
44	Manganese-based layered oxide cathodes for sodium ion batteries. <i>Nano Select</i> , 2020 , 1, 200-225	3.1	10
43	Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. <i>Energy Storage Materials</i> , 2022 , 44, 145-155	19.4	10
42	N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. <i>Energy Storage Materials</i> , 2021 , 42, 679-686	19.4	10
41	Atomical Reconstruction and Cationic Reordering for Nickel-Rich Layered Cathodes. <i>Advanced Energy Materials</i> ,2103757	21.8	9
40	Monocrystal Cu3Mo2O9 Confined in Polyaniline Protective Layer: an Effective Strategy for Promoting Lithium Storage Stability. <i>ChemElectroChem</i> , 2019 , 6, 1688-1695	4.3	9
39	Controllable fabrication of two-dimensional layered transition metal oxides through electrochemical exfoliation of non-van der Waals metals for rechargeable zinc-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 408, 127247	14.7	9
38	Olivine LiMnxFe1NPO4 cathode materials for lithium ion batteries: restricted factors of rate performances. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14214-14232	13	9
37	Influence of P doping on Na and K storage properties of N-rich carbon nanosheets. <i>Materials Chemistry and Physics</i> , 2019 , 236, 121809	4.4	8
36	Sodium-Ion Batteries: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life (Adv. Mater. 47/2015). <i>Advanced Materials</i> , 2015 , 27, 7895-7895	24	8
35	Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors <i>Nano-Micro Letters</i> , 2022 , 14, 53	19.5	8
34	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. <i>Small</i> , 2021 , 17, e2102091	11	8
33	Recent advances of composite electrolytes for solid-state Li batteries. <i>Journal of Energy Chemistry</i> , 2022 , 67, 524-548	12	7
32	Alternating voltage induced electrochemical synthesis of three-dimensionalization copper oxide for lithium-ion battery application. <i>Chemical Physics Letters</i> , 2016 , 653, 30-34	2.5	7
31	Advanced Carbon Materials for Sodium-Ion Capacitors. <i>Batteries and Supercaps</i> , 2021 , 4, 538-553	5.6	7
30	Electrochemically captured Zintl cluster-induced bismuthene for sodium-ion storage. <i>Chemical Communications</i> , 2021 , 57, 2396-2399	5.8	7
29	Perovskite ABO3-Type MOF-Derived Carbon Decorated Fe3O4 with Enhanced Lithium Storage Performance. <i>ChemElectroChem</i> , 2018 , 5, 3426-3436	4.3	7

28	Highly efficient re-cycle/generation of LiCoO cathode assisted by 2-naphthalenesulfonic acid. <i>Journal of Hazardous Materials</i> , 2021 , 416, 126114	12.8	7
27	Effect of Short Carbon Fibers and Carbon Nanotubes Dispersed by Utilizing Hollow Glass Beads as Carriers on the Tensile and Curing Properties of Epoxy Resin. <i>Polymer-Plastics Technology and Engineering</i> , 2013 , 52, 1519-1526		5
26	Dianion Induced Electron Delocalization of Trifunctional Electrocatalysts for Rechargeable ZnAir Batteries and Self-Powered Water Splitting. <i>Advanced Functional Materials</i> ,2201944	15.6	5
25	Engineering metal-sulfides with cations-tunable metal-oxides electrocatalysts with promoted catalytic conversion for robust ions-storage capability. <i>Energy Storage Materials</i> , 2021 , 45, 1183-1183	19.4	4
24	Interfacial regulation of dendrite-free zinc anodes through a dynamic hydrophobic molecular membrane. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14265-14269	13	4
23	Robust artificial interlayer for columnar sodium metal anode. <i>Nano Energy</i> , 2022 , 97, 107203	17.1	4
22	Energy Storage: Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries (Adv. Sci. 1/2017). <i>Advanced Science</i> , 2017 , 4,	13.6	3
21	A high-rate capability LiFePO4/C cathode achieved by the modulation of the band structures. <i>Journal of Materials Chemistry A</i> ,	13	3
20	Heterogeneous Interface Design for Enhanced Sodium Storage: Sb Quantum Dots Confined by Functional Carbon <i>Small Methods</i> , 2021 , 5, e2100188	12.8	3
19	Enabling the sustainable recycling of LiFePO4 from spent lithium-ion batteries. <i>Green Chemistry</i> , 2022 , 24, 2506-2515	10	3
18	Zintl chemistry: Current status and future perspectives. Chemical Engineering Journal, 2021, 133841	14.7	2
17	MnO2 Nanowires Anchored with Graphene Quantum Dots for Stable Aqueous Zinc-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 10940-10947	6.1	2
16	Molecularly Compensated Pre-Metallation Strategy for Metal-Ion Batteries and Capacitors. <i>Angewandte Chemie</i> , 2021 , 133, 17207-17216	3.6	2
15	Phase-Controllable Cobalt Phosphides Induced through Hydrogel for Higher Lithium Storages. <i>Inorganic Chemistry</i> , 2020 , 59, 6471-6480	5.1	2
14	Liquid Alloying Na-K for Sodium Metal Anodes. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9321-932	276.4	2
13	Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid. Waste Management, 2021 , 136, 1-10	8.6	1
12	Channel regulation of TFC membrane with hydrophobic carbon dots in forward osmosis. <i>Chinese Chemical Letters</i> , 2021 , 32, 2882-2882	8.1	1
11	Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes. <i>Inorganic Chemistry</i> , 2021 , 60, 12526-12535	5.1	1

LIST OF PUBLICATIONS

10	Iron-Based Layered Cathodes for Sodium-Ion Batteries. Batteries and Supercaps,	5.6	1
9	Presodiation Strategies for the Promotion of Sodium-Based Energy Storage Systems. <i>Chemistry - A European Journal</i> , 2021 , 27, 16082-16092	4.8	1
8	Electrochemical Zintl Cluster Bi22[Induced chemically bonded bismuth / graphene oxide composite for sodium-ion batteries. <i>Electrochimica Acta</i> , 2022 , 413, 140174	6.7	1
7	Trace tea polyphenols enabling reversible dendrite-free zinc anode. <i>Journal of Colloid and Interface Science</i> , 2022 , 624, 450-459	9.3	1
6	Nanomaterials for electrochemical energy storage. Frontiers of Nanoscience, 2021, 18, 421-484	0.7	O
5	Electronic Effect and Regiochemistry of Substitution in Pre-sodiation Chemistry. <i>Journal of Physical Chemistry Letters</i> , 2021 , 11968-11979	6.4	O
4	Carbon Dots-Regulated Pomegranate-Like Metal Oxide Composites: From Growth Mechanism to Lithium Storage <i>Small Methods</i> , 2022 , e2200245	12.8	O
3	Suppressing the voltage failure by twinned heterostructure for high power sodium-ion capacitor. <i>Chemical Engineering Journal</i> , 2022 , 446, 137070	14.7	O
2	Enabling Reversible Reaction by Uniform Distribution of Heterogeneous Intermediates on Defect-Rich SnSSe/C Layered Heterostructure for Ultralong-Cycling Sodium Storage. <i>Small</i> ,2202134	11	О
1	Carbon Anode Materials for Sodium-Ion Batteries 2019 , 1-86		