
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1533403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epoxy Nanocomposites with Highly Exfoliated Clay:  Mechanical Properties and Fracture Mechanisms. Macromolecules, 2005, 38, 788-800.	2.2	511
2	Polyethylenimine-Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA. Angewandte Chemie - International Edition, 2005, 44, 4782-4785.	7.2	346
3	Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer, 2003, 44, 4491-4499.	1.8	337
4	Graphene-Wrapped Polyaniline Hollow Spheres As Novel Hybrid Electrode Materials for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2013, 5, 3382-3391.	4.0	310
5	Lignin-Derived Fused Electrospun Carbon Fibrous Mats as High Performance Anode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 12275-12282.	4.0	282
6	PEI-g-chitosan, a Novel Gene Delivery System with Transfection Efficiency Comparable to Polyethylenimine in Vitro and after Liver Administration in Vivo. Bioconjugate Chemistry, 2006, 17, 152-158.	1.8	256
7	Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. Journal of Materials Chemistry, 2011, 21, 2775-2782.	6.7	237
8	Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Progress in Polymer Science, 2016, 62, 22-72.	11.8	228
9	Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Materials Science and Engineering C, 2018, 92, 1092-1116.	3.8	211
10	Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1890-1896.	3.8	204
11	Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon, 2016, 100, 151-157.	5.4	201
12	Recent Progress in Using Stereocomplexation for Enhancement of Thermal and Mechanical Property of Polylactide. ACS Sustainable Chemistry and Engineering, 2016, 4, 5370-5391.	3.2	195
13	Thermal degradation behavior of polyamide 6/clay nanocomposites. Polymer Degradation and Stability, 2003, 81, 47-56.	2.7	190
14	Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. Journal of Membrane Science, 2003, 211, 91-99.	4.1	185
15	Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Composites Science and Technology, 2003, 63, 331-337.	3.8	177
16	Synthesis and Stereocomplex Crystallization of Poly(lactide)–Graphene Oxide Nanocomposites. ACS Macro Letters, 2012, 1, 709-713.	2.3	170
17	Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. Journal of Applied Polymer Science, 2004, 94, 1236-1244.	1.3	162
18	Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. Journal of Power Sources, 2013, 243, 973-981.	4.0	157

#	Article	IF	CITATIONS
19	Toward Negative Poisson Ratio Polymers through Molecular Design. Macromolecules, 1998, 31, 3145-3147.	2.2	156
20	Blue Photoluminescence from Hyperbranched Poly(amino ester)s. Macromolecules, 2005, 38, 9906-9909.	2.2	155
21	Covalent bonded polymer–graphene nanocomposites. Journal of Polymer Science Part A, 2010, 48, 4262-4267.	2.5	149
22	The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials, 2004, 25, 5659-5666.	5.7	148
23	Synthesis of PtRu Nanoparticles from the Hydrosilylation Reaction and Application as Catalyst for Direct Methanol Fuel Cell. Journal of Physical Chemistry B, 2005, 109, 16644-16649.	1.2	146
24	Biodegradable and renewable poly(lactide)–lignin composites: synthesis, interface and toughening mechanism. Journal of Materials Chemistry A, 2015, 3, 3699-3709.	5.2	144
25	Polyhedral oligomeric silsesquioxanes (POSSs): an important building block for organic optoelectronic materials. Journal of Materials Chemistry C, 2017, 5, 5283-5298.	2.7	138
26	Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies. International Journal of Biological Macromolecules, 2018, 109, 99-113.	3.6	138
27	Preparation of Highly Exfoliated Epoxy/Clay Nanocomposites by "Slurry Compoundingâ€ı  Process and Mechanisms. Langmuir, 2005, 21, 3613-3618.	1.6	134
28	Trimeric supramolecular liquid crystals induced by halogen bonds. Journal of Materials Chemistry, 2006, 16, 3540.	6.7	130
29	Highly Biodegradable and Tough Polylactic Acid–Cellulose Nanocrystal Composite. ACS Sustainable Chemistry and Engineering, 2017, 5, 3929-3937.	3.2	126
30	Superhydrophobic fluorinated POSS–PVDF-HFP nanocomposite coating on glass by electrospinning. Journal of Materials Chemistry, 2012, 22, 18479.	6.7	122
31	Electrical conductivity of polyaniline–dodecylbenzene sulphonic acid complex: thermal degradation and its mechanism. Synthetic Metals, 2002, 128, 167-178.	2.1	118
32	Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials, 2004, 25, 2619-2628.	5.7	118
33	Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polymer International, 2005, 54, 456-464.	1.6	115
34	Conversion of biomass lignin to high-value polyurethane: A review. Journal of Bioresources and Bioproducts, 2020, 5, 163-179.	11.8	115
35	Biodegradable "Core–Shell―Rubber Nanoparticles and Their Toughening of Poly(lactides). Macromolecules, 2013, 46, 9625-9633.	2.2	113
36	High Modulus, Strength, and Toughness Polyurethane Elastomer Based on Unmodified Lignin. ACS Sustainable Chemistry and Engineering, 2017, 5, 7942-7949.	3.2	108

#	Article	IF	CITATIONS
37	Synthesis, morphology, and properties of hydroxyl terminatedâ€POSS/polyimide lowâ€∢i>k nanocomposite films. Journal of Polymer Science Part A, 2008, 46, 5887-5896.	2.5	104
38	Poly(ester urethane)s Consisting of Poly[(R)-3-hydroxybutyrate] and Poly(ethylene glycol) as Candidate Biomaterials:Â Characterization and Mechanical Property Study. Biomacromolecules, 2005, 6, 2740-2747.	2.6	102
39	3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications. ACS Applied Materials & Interfaces, 2019, 11, 13787-13795.	4.0	102
40	Effects of Chemistries of Trifunctional Amines on Mechanisms of Michael Addition Polymerizations with Diacrylates. Macromolecules, 2004, 37, 6763-6770.	2.2	100
41	Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. Journal of Materials Chemistry, 2011, 21, 4827.	6.7	98
42	High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2019, 121, 411-417.	3.8	98
43	Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film. ACS Applied Materials & Interfaces, 2015, 7, 19882-19886.	4.0	96
44	Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries. ACS Applied Materials & Interfaces, 2016, 8, 1842-1853.	4.0	94
45	Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT:PSS nanocomposites. Carbon, 2019, 149, 25-32.	5.4	94
46	Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: Molecular Design, Material Advantages, and Emerging Applications. , 2020, 2, 296-316.		92
47	Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. Journal of Polymer Science Part A, 2004, 42, 3490-3503.	2.5	91
48	Synthesis, Electronic, and Emission Spectroscopy, and Electrochromic Characterization of Azuleneâ 'Fluorene Conjugated Oligomers and Polymers. Macromolecules, 2009, 42, 5534-5544.	2.2	91
49	Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides. Journal of Materials Chemistry, 2004, 14, 2858.	6.7	90
50	Organic–inorganic nanocomposites from cubic silsesquioxane epoxides: direct characterization of interphase, and thermomechanical properties. Polymer, 2005, 46, 7018-7027.	1.8	90
51	Nanocomposites for bone tissue regeneration. Nanomedicine, 2013, 8, 639-653.	1.7	90
52	Synthesis and Self-Assembly of Difunctional Halogen-Bonding Molecules:Â A New Family of Supramolecular Liquid-Crystalline Polymers. Macromolecules, 2005, 38, 3554-3557.	2.2	87
53	Highly Efficient Blue-Light-Emitting Glass-Forming Molecules Based on Tetraarylmethane/Silane and Fluorene:  Synthesis and Thermal, Optical, and Electrochemical Properties. Chemistry of Materials, 2005, 17, 434-441.	3.2	87
54	Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polymer, 2015, 58, 43-52.	1.8	87

#	Article	IF	CITATIONS
55	Micelle Formation and Gelation of (PEGâ^'P(MA-POSS)) Amphiphilic Block Copolymers via Associative Hydrophobic Effects. Langmuir, 2010, 26, 11763-11773.	1.6	86
56	Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Physica Status Solidi (B): Basic Research, 2005, 242, 576-584.	0.7	85
57	Efficient gene delivery with paclitaxel-loaded DNA-hybrid polyplexes based on cationic polyhedral oligomeric silsesquioxanes. Journal of Materials Chemistry, 2010, 20, 10634.	6.7	85
58	Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: effect of molecular weight of the dopants. Synthetic Metals, 2003, 138, 429-440.	2.1	84
59	Highly Efficient Luminescent Organic Clusters with Quantum Dot-Like Properties. Journal of the American Chemical Society, 2004, 126, 7792-7793.	6.6	84
60	Morphology, tensile and fracture characteristics of epoxy-alumina nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5670-5676.	2.6	84
61	Biodegradable silica rubber core-shell nanoparticles and their stereocomplex for efficient PLA toughening. Composites Science and Technology, 2018, 159, 11-17.	3.8	83
62	Improving the fracture toughness of epoxy with nanosilica-rubber core-shell nanoparticles. Composites Science and Technology, 2016, 125, 132-140.	3.8	82
63	Interfacial control and carrier tuning of carbon nanotube/polyaniline composites for high thermoelectric performance. Carbon, 2018, 136, 292-298.	5.4	82
64	Hyperbranched Poly(amino ester)s with Different Terminal Amine Groups for DNA Delivery. Biomacromolecules, 2006, 7, 1879-1883.	2.6	81
65	Nanoindentation and Morphological Studies of Epoxy Nanocomposites. Macromolecular Materials and Engineering, 2006, 291, 1358-1366.	1.7	81
66	Preparation and mechanical properties of exfoliated CoAl layered double hydroxide (LDH)/polyamide 6 nanocomposites by in situ polymerization. Composites Science and Technology, 2009, 69, 991-996.	3.8	78
67	Tailoring Micelle Formation and Gelation in (PEGâ^'P(MA-POSS)) Amphiphilic Hybrid Block Copolymers. Macromolecules, 2011, 44, 622-631.	2.2	78
68	Hyperbranched Blue-Light-Emitting Alternating Copolymers of Tetrabromoarylmethane/Silane and 9,9-Dihexylfluorene-2,7-diboronic Acid. Macromolecules, 2004, 37, 5965-5970.	2.2	75
69	Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. Journal of Materials Chemistry C, 2017, 5, 8694-8698.	2.7	75
70	A DFT Study of the Amination of Fullerenes and Carbon Nanotubes:Â Reactivity and Curvature. Journal of Physical Chemistry B, 2005, 109, 13755-13760.	1.2	74
71	Self-Assembly of Brush-Like Poly[poly(ethylene glycol) methyl ether methacrylate] Synthesized via Aqueous Atom Transfer Radical Polymerization. Langmuir, 2008, 24, 13279-13286.	1.6	74
72	Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 2010, 502, 1-7.	1.2	74

#	Article	IF	CITATIONS
73	Dynamic and Static Light Scattering Studies on Self-Aggregation Behavior of Biodegradable Amphiphilic Poly(ethylene oxide)â"Poly[(R)-3-hydroxybutyrate]â^'Poly(ethylene oxide) Triblock Copolymers in Aqueous Solution. Journal of Physical Chemistry B, 2006, 110, 5920-5926.	1.2	73
74	Three-Dimensional Structure of CeO ₂ Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 3544-3551.	1.5	73
75	A processing-induced clay dispersion and its effect on the structure and properties of polyamide 6. Polymer International, 2004, 53, 392-399.	1.6	72
76	Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model – Theory and explicit expressions. International Journal of Engineering Science, 2013, 73, 33-55.	2.7	72
77	Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Composites Part B: Engineering, 2019, 165, 671-678.	5.9	72
78	Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks. Soft Matter, 2012, 8, 965-972.	1.2	71
79	2A2+ BBâ€~Bâ€~Ââ€~ Approach to Hyperbranched Poly(amino ester)s. Macromolecules, 2005, 38, 5519-5525.	2.2	70
80	Microdeformation and Fracture Mechanisms in Polyamide-6/Organoclay Nanocomposites. Macromolecules, 2008, 41, 193-202.	2.2	70
81	β phase PVDF-hfp induced by mesoporous SiO ₂ nanorods: synthesis and formation mechanism. Journal of Materials Chemistry C, 2015, 3, 3708-3713.	2.7	70
82	Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors. Microporous and Mesoporous Materials, 2020, 297, 109960.	2.2	69
83	Biodegradable PHB-Rubber Copolymer Toughened PLA Green Composites with Ultrahigh Extensibility. ACS Sustainable Chemistry and Engineering, 2018, 6, 15517-15527.	3.2	68
84	Crystallization and melting behavior of polyester/clay nanocomposites. Polymer International, 2004, 53, 1282-1289.	1.6	66
85	Morphology, thermal, and rheological behavior of nylon 11/multiâ€walled carbon nanotube nanocomposites prepared by melt compounding. Polymer Engineering and Science, 2009, 49, 1063-1068.	1.5	66
86	Synthesis of Poly(glycidyl methacrylate)â€ <i>block</i> â€Poly(pentafluorostyrene) by RAFT: Precursor to Novel Amphiphilic Poly(glyceryl methacrylate)â€ <i>block</i> â€Poly(pentafluorostyrene). Macromolecular Rapid Communications, 2008, 29, 1902-1907.	2.0	65
87	Novel poly(amino ester)s obtained from Michael addition polymerizations of trifunctional amine monomers with diacrylates: safe and efficient DNA carriersElectronic supplementary information (ESI) available: synthesis procedure, NMR spectra, and experimental protocols. See http://www.rsc.org/suppdata/cc/b3/b309487a/. Chemical Communications, 2003, . 2630.	2.2	63
88	Applications of environmental scanning electron microscopy to colloidal aggregation and film formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 174, 37-53.	2.3	61
89	Electrically Conductive Epoxy/Clay/Vapor Grown Carbon Fiber Hybrids. Macromolecules, 2006, 39, 908-911.	2.2	61
90	Azulene-containing organic chromophores with tunable near-IR absorption in the range of 0.6 to 1.7 μm. Journal of Materials Chemistry, 2012, 22, 10448.	6.7	61

#	Article	IF	CITATIONS
91	Bend, Twist, and Turn: First Bendable and Malleable Toughened PLA Green Composites. Advanced Functional Materials, 2020, 30, 2001565.	7.8	61
92	Synthesis and Self-Assembly of Brush-Type Poly[poly(ethylene glycol)methyl ether methacrylate]- <i>block</i> -poly(pentafluorostyrene) Amphiphilic Diblock Copolymers in Aqueous Solution. Langmuir, 2010, 26, 2361-2368.	1.6	60
93	Design of polyhedral oligomeric silsesquioxane (POSS) based thermo-responsive amphiphilic hybrid copolymers for thermally denatured protein protection applications. Polymer Chemistry, 2014, 5, 6740-6753.	1.9	60
94	Evaluation of Hyperbranched Poly(amino ester)s of Amine Constitutions Similar to Polyethylenimine for DNA Delivery. Biomacromolecules, 2005, 6, 3166-3173.	2.6	59
95	Simultaneous enhancement of strength and toughness of epoxy using POSS-Rubber core–shell nanoparticles. Composites Science and Technology, 2015, 118, 63-71.	3.8	59
96	Synthesis, stereocomplex crystallization, morphology and mechanical property of poly(lactide)–carbon nanotube nanocomposites. RSC Advances, 2013, 3, 2219.	1.7	58
97	Cubic silsesquioxane?polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Materialia, 2005, 53, 2395-2404.	3.8	57
98	Coreâ^'Corona Structure of Cubic Silsesquioxane-Poly(Ethylene Oxide) in Aqueous Solution:Â Fluorescence, Light Scattering, and TEM Studies. Journal of Physical Chemistry B, 2005, 109, 9455-9462.	1.2	57
99	Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomaterialia, 2009, 5, 2002-2012.	4.1	57
100	Enhanced Ordering in Gold Nanoparticles Self-Assembly through Excess Free Ligands. Langmuir, 2011, 27, 3355-3360.	1.6	57
101	Effects of clay on polymorphism of polypropylene in polypropylene/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1810-1816.	2.4	56
102	Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: Facile synthesis and enhancement of hydrophobicity of their polymer blends. Journal of Materials Chemistry, 2009, 19, 4740.	6.7	56
103	Poly(ethylene glycol) Conjugated Poly(lactide)-Based Polyelectrolytes: Synthesis and Formation of Stable Self-Assemblies Induced by Stereocomplexation. Langmuir, 2015, 31, 2321-2333.	1.6	56
104	High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites. Physical Chemistry Chemical Physics, 2018, 20, 9411-9418.	1.3	55
105	Synthesis and Self-Assembly of Donorâ^'Spacerâ^'Acceptor Molecules. Liquid Crystals Formed by Single-Component "Complexes―via Intermolecular Hydrogen-Bonding Interaction. Macromolecules, 2005, 38, 1684-1690.	2.2	54
106	A DFT study on poly(lactic acid) polymorphs. Polymer, 2010, 51, 2779-2785.	1.8	54
107	Tailoring the surface chemistry and morphology of glass fiber membranes for robust oil/water separation using poly(dimethylsiloxanes) as hydrophobic molecular binders. Journal of Materials Chemistry A, 2018, 6, 607-615.	5.2	54
108	Synthesis and selfâ€assembly of poly(styrene)â€ <i>b</i> â€poly(<i>N</i> â€vinylpyrrolidone) amphiphilic diblock copolymers made via a combined ATRP and MADIX approach. Journal of Polymer Science Part A, 2008, 46, 5604-5615.	2.5	52

#	Article	IF	CITATIONS
109	Robust, 3D-printed hydratable plastics for effective solar desalination. Nano Energy, 2021, 79, 105436.	8.2	52
110	Novel Glassy Tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as Building Blocks for Efficient and Nonaggregating Blue-Light-Emitting Tetrahedral Materials. Organic Letters, 2005, 7, 2829-2832.	2.4	51
111	Novel linear-dendritic-like amphiphilic copolymers: synthesis and self-assembly characteristics. Polymer Chemistry, 2014, 5, 4069-4075.	1.9	51
112	Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 9058-9067.	5.2	51
113	Permeability of polyimides derived from non-coplanar diamines and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride. Polymer, 2003, 44, 4715-4721.	1.8	50
114	Stable Dispersions of Hybrid Nanoparticles Induced by Stereocomplexation between Enantiomeric Poly(lactide) Star Polymers. Langmuir, 2011, 27, 10538-10547.	1.6	50
115	Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale, 2015, 7, 9394-9398.	2.8	50
116	Hyperbranched Blue to Red Light-Emitting Polymers with Tetraarylsilyl Cores:Â Synthesis, Optical and Electroluminescence Properties, and ab Initio Modeling Studies. Macromolecules, 2005, 38, 4157-4168.	2.2	49
117	Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance. Journal of Materials Chemistry B, 2018, 6, 440-448.	2.9	49
118	Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications. Macromolecular Rapid Communications, 2020, 41, e2000149.	2.0	49
119	A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. Chemical Communications, 2020, 56, 9142-9145.	2.2	49
120	Synthesis, micelle formation, and bulk properties of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 To hybrid copolymers. Journal of Polymer Science Part A, 2010, 48, 152-163.	d (glycol)âŧ 2.5	€ <i>b</i> â€pc 48
121	Super Tough and Self-Healable Poly(dimethylsiloxane) Elastomer via Hydrogen Bonding Association and Its Applications as Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 31975-31983.	4.0	47
122	Thermal- and pH-Responsive Degradable Polymers. Macromolecules, 2008, 41, 18-20.	2.2	46
123	Effect of Molecular Orientation on Mechanical Property of Single Electrospun Fiber of Poly[(<i>R</i>)-3-hydroxybutyrate- <i>co</i> -(<i>R</i>)-3-hydroxyvalerate]. Journal of Physical Chemistry B, 2009, 113, 13179-13185.	1.2	46
124	Lignin Epoxy Composites: Preparation, Morphology, and Mechanical Properties. Macromolecular Materials and Engineering, 2016, 301, 328-336.	1.7	46
125	Nano-hybrid luminescent dot: synthesis, characterization and optical properties. Journal of Materials Chemistry, 2006, 16, 829-836.	6.7	45
126	Octa(maleimido phenyl) silsesquioxane copolymers. Journal of Polymer Science Part A, 2005, 43, 2483-2494.	2.5	44

#	Article	IF	CITATIONS
127	Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core. Polymer, 2006, 47, 5035-5043.	1.8	44
128	Photopolymer resins for luminescent threeâ€dimensional printing. Journal of Applied Polymer Science, 2017, 134, 44988.	1.3	44
129	Preparation, microstructure and thermal mechanical properties of epoxy/crude clay nanocomposites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 192-197.	3.8	43
130	Synthesis and characterization of organic/inorganic hybrid star polymers of 2,2,3,4,4,4â€hexafluorobutyl methacrylate and octa(aminophenyl)silsesquioxane nanoâ€cage made via atom transfer radical polymerization. Journal of Polymer Science Part A, 2008, 46, 7287-7298.	2.5	43
131	Azulene-based conjugated polymers with tuneable near-IR absorption up to 2.5Âμm. Polymer Chemistry, 2014, 5, 2980-2989.	1.9	43
132	In-SituDeformation Studies of Rubber Toughened Poly(methyl methacrylate):Â Influence of Rubber Particle Concentration and Rubber Cross-Linking Density. Macromolecules, 1998, 31, 158-164.	2.2	42
133	Hydrothermal effects on the thermomechanical properties of high performance epoxy/clay nanocomposites. Polymer Engineering and Science, 2006, 46, 215-221.	1.5	42
134	Multi-walled carbon nanotube/polyimide composite film fabricated through electrophoretic deposition. Polymer, 2010, 51, 2155-2160.	1.8	42
135	Tuning self-assembly of hybrid PLA-P(MA-POSS) block copolymers in solution via stereocomplexation. Polymer Chemistry, 2013, 4, 1250-1259.	1.9	42
136	Highly Stable and Rapid Switching Electrochromic Thin Films Based on Metal–Organic Frameworks with Redox-Active Triphenylamine Ligands. ACS Applied Materials & Interfaces, 2020, 12, 7442-7450.	4.0	42
137	Time-Dependent Polymerization Kinetic Study and the Properties of Hybrid Polymers with Functional Silsesquioxanes. Journal of Physical Chemistry B, 2010, 114, 9119-9127.	1.2	41
138	Effect of interphase and strain-rate on the tensile properties of polyamide 6 reinforced with functionalized silica nanoparticles. Composites Science and Technology, 2013, 75, 62-69.	3.8	41
139	Modulating carrier transport for the enhanced thermoelectric performance of carbon nanotubes/polyaniline composites. Organic Electronics, 2019, 69, 62-68.	1.4	41
140	Facile green strategy for improving thermoelectric performance of carbon nanotube/polyaniline composites by ethanol treatment. Composites Science and Technology, 2020, 189, 108023.	3.8	41
141	Thermally Stable Blue-Light-Emitting Hybrid Organicâ~'Inorganic Polymers Derived from Cyclotriphosphazene. Macromolecules, 2008, 41, 9624-9636.	2.2	40
142	Designing Poly[(<i>R</i>)-3-hydroxybutyrate]-Based Polyurethane Block Copolymers for Electrospun Nanofiber Scaffolds with Improved Mechanical Properties and Enhanced Mineralization Capability. Journal of Physical Chemistry B, 2010, 114, 7489-7498.	1.2	40
143	Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function. Smart Materials and Structures, 2012, 21, 115010.	1.8	40
144	Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Composites Science and Technology, 2018, 159, 208-215.	3.8	40

#	Article	IF	CITATIONS
145	Transmission Electron Microscopy Observations on Lamellar Melting of Cold-Crystallized Isotactic Polystyrene. Macromolecules, 2001, 34, 4305-4307.	2.2	39
146	Starâ€like polyurethane hybrids with functional cubic silsesquioxanes: Preparation, morphology, and thermomechanical properties. Journal of Polymer Science Part A, 2009, 47, 4602-4616.	2.5	39
147	Organic–inorganic hybrid liquid crystals derived from octameric silsesquioxanes. Effect of the peripheral groups in mesogens on the formation of liquid crystals. Journal of Materials Chemistry, 2011, 21, 5248.	6.7	39
148	Fabrication of CFRP from high performance clay/epoxy nanocomposite: Preparation conditions, thermal–mechanical properties and interlaminar fracture characteristics. Composites Part A: Applied Science and Manufacturing, 2011, 42, 881-887.	3.8	39
149	A Comparative Study on Luminescent Copolymers of Fluorene and Carbazole with Conjugated or δ-Si Interrupted Structures:Â Steric Effects. Macromolecules, 2006, 39, 1397-1402.	2.2	38
150	Octafunctional cubic silsesquioxane (CSSQ)/poly(methyl methacrylate) nanocomposites: Synthesis by atom transfer radical polymerization at mild conditions and the influence of CSSQ on nanocomposites. Journal of Polymer Science Part A, 2008, 46, 766-776.	2.5	38
151	Barnacle repellent nanostructured surfaces formed by the self-assembly of amphiphilic block copolymers. Polymer Chemistry, 2010, 1, 276-279.	1.9	38
152	Hybrid Starlike Block Copolymer POSS–(PDMAEMA- <i>b</i> -PNIPAm) ₈ : Thermal Gelation and Its Blends with Poly(vinyl alcohol). Macromolecules, 2016, 49, 4236-4244.	2.2	38
153	A Universal Scheme for Patterning of Oxides via Thermal Nanoimprint Lithography. Advanced Functional Materials, 2013, 23, 2201-2211.	7.8	37
154	A highly bendable transparent electrode for organic electrochromic devices. Organic Electronics, 2019, 66, 86-93.	1.4	36
155	Structure of a self-assembled hydrogen-bonded ?living? main chain liquid crystalline polymer. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1617-1624.	2.4	35
156	Photoactive Perylenediimide-Bridged Silsesquioxane Functionalized Periodic Mesoporous Organosilica Thin Films (PMO-SBA15): Synthesis, Self-Assembly, and Photoluminescent and Enhanced Mechanical Properties. Langmuir, 2009, 25, 4743-4750.	1.6	35
157	Amphiphilic Conetworks and Gels Physically Cross-Linked via Stereocomplexation of Polylactide. Langmuir, 2013, 29, 14307-14313.	1.6	35
158	Enhanced Thermoelectric Performance of Carbon Nanotubes/Polyaniline Composites by Multiple Interface Engineering. ACS Applied Materials & Interfaces, 2021, 13, 6650-6658.	4.0	35
159	Synthesis and Characterization of Novel Alcohol-Soluble Ladderlike Poly(silsesquioxane)s Containing Side-Chain Hydroxy Groups. Macromolecular Chemistry and Physics, 2001, 202, 1576-1580.	1.1	34
160	Calculation of Infrared/Raman Spectra and Dielectric Properties of Various Crystalline Poly(lactic) Tj ETQq0 0 0 r 116, 1524-1535.	gBT /Over 1.2	lock 10 Tf 50 34
161	Synthesis and characterisation of mainâ€chain hydrogenâ€bonded supramolecular liquid crystalline complexes formed by azoâ€containing compounds. Liquid Crystals, 2008, 35, 241-251.	0.9	33
162	Non-covalent functionalization of multi walled carbon nanotubes and their application for	5.4	32

conductive composites. Carbon, 2008, 46, 829-831.

#	Article	IF	CITATIONS
163	Photoluminescence from Amino-Containing Polymer in the Presence of CO2: Carbamato Anion Formed as a Fluorophore. Scientific Reports, 2013, 3, 2763.	1.6	32
164	Star-shaped polyhedral oligomeric silsesquioxane-polycaprolactone-polyurethane as biomaterials for tissue engineering application. NPG Asia Materials, 2014, 6, e142-e142.	3.8	32
165	Cavitation-crazing transition in rubber toughening of poly(lactic acid)-cellulose nanocrystal composites. Composites Science and Technology, 2018, 168, 12-19.	3.8	32
166	Oxygen self-supplied enzyme nanogels for tumor targeting with amplified synergistic starvation and photodynamic therapy. Acta Biomaterialia, 2022, 142, 274-283.	4.1	32
167	Synthesis and characterization of soluble polyimides derived from [1,1?;4?,1?]terphenyl-2?,5?-diol and biphenyl-2,5-diol. Journal of Polymer Science Part A, 2001, 39, 2998-3007.	2.5	31
168	Hydrogen bondâ€directed selfâ€assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase. Journal of Polymer Science Part A, 2008, 46, 4691-4703.	2.5	31
169	Thermo-mechanical properties of poly(vinylidene fluoride) modified graphite/poly(methyl) Tj ETQq1 1 0.784314	rgBT /Ove	rlo <u>ck</u> 10 Tf 5(
170	Self-Assembly of Block Copolymer Micelles: Synthesis via Reversible Additionâ^'Fragmentation Chain Transfer Polymerization and Aqueous Solution Properties. Journal of Physical Chemistry B, 2010, 114, 9128-9134.	1.2	31
171	Synthesis and self-assembly of halogen-bond donor–spacer–hydrogen-bond donor molecules: polymeric liquid crystals induced by combination of intermolecular halogen- and hydrogen-bonding interactions. Liquid Crystals, 2013, 40, 185-196.	0.9	31
172	Synergistic Toughening of Poly(lactic acid)–Cellulose Nanocrystal Composites through Cooperative Effect of Cavitation and Crazing Deformation Mechanisms. ACS Applied Polymer Materials, 2019, 1, 509-518.	2.0	30
173	Recent Advances in Polyaniline-Based Thermoelectric Composites. CCS Chemistry, 2021, 3, 2547-2560.	4.6	30
174	Formation and Characterization of Water-Soluble Platinum Nanoparticles Using a Unique Approach Based on the Hydrosilylation Reaction. Langmuir, 2004, 20, 5145-5148.	1.6	29
175	Synthesis and Selfâ€Assembly of pHâ€Responsive Amphiphilic Poly(dimethylaminoethyl) Tj ETQq1 1 0.784314 Macromolecular Rapid Communications, 2009, 30, 1002-1008.	rgBT /Over 2.0	lock 10 Tf 50 29
176	High performance additive manufactured scaffolds for bone tissue engineering application. Soft Matter, 2011, 7, 8013.	1.2	29
177	Stable Superhydrophobic Porous Coatings from Hybrid ABC Triblock Copolymers and Their Anticorrosive Performance. ACS Applied Materials & Interfaces, 2017, 9, 30056-30063.	4.0	29
178	Interfacial Energy Barrier Tuning for Enhanced Thermoelectric Performance of PEDOT Nanowire/SWNT/PEDOT:PSS Ternary Composites. ACS Applied Energy Materials, 2019, 2, 8843-8850.	2.5	29
179	Engineering doping level for enhanced thermoelectric performance of carbon nanotubes/polyaniline composites. Composites Science and Technology, 2021, 210, 108797.	3.8	29
180	Neuron Inspired Allâ€Around Universal Telechelic Polyurea with High Stiffness, Excellent Crack Tolerance, Recordâ€High Adhesion, Outstanding Triboelectricity, and AIE Fluorescence. Advanced Functional Materials, 2022, 32, .	7.8	29

#	Article	IF	CITATIONS
181	Inclusion complex formation between ?,?-cyclodextrins and organic-inorganic star-shaped poly(ethylene glycol) from an octafunctional silsesquioxane core. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1173-1180.	2.4	28
182	Platinum Nanoparticles from the Hydrosilylation Reaction:  Capping Agents, Physical Characterizations, and Electrochemical Properties. Langmuir, 2005, 21, 699-704.	1.6	28
183	Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites. Polymers and Polymer Composites, 2008, 16, 501-507.	1.0	28
184	Ab Initio Elasticity of Poly(lactic acid) Crystals. Journal of Physical Chemistry B, 2010, 114, 3133-3139.	1.2	28
185	"Breathing―unimolecular micelles based on a novel star-like amphiphilic hybrid copolymer. Journal of Materials Chemistry B, 2015, 3, 4715-4722.	2.9	28
186	Morphology and Deformation Behaviour of a Liquid Crystalline Polymer Containing Laterally Attached Pentaphenyl Rods. Macromolecular Chemistry and Physics, 2005, 206, 233-239.	1.1	27
187	Rubber toughening of poly(lactic acid): Effect of stereocomplex formation at the rubberâ€matrix interface. Journal of Applied Polymer Science, 2013, 128, 2541-2547.	1.3	27
188	Effect of surface chemistry and morphology of silica on the thermal and mechanical properties of silicone elastomers. Journal of Applied Polymer Science, 2018, 135, 46646.	1.3	27
189	Morphology of Core-Shell Polymer Latices during Drying. Langmuir, 1996, 12, 6250-6256.	1.6	26
190	Novel microencapsulated curing accelerator for prolonging shelf life of epoxy resin composition. Journal of Applied Polymer Science, 2002, 85, 873-878.	1.3	26
191	PEG-POSS Assisted facile preparation of amphiphilic gold nanoparticles and interface formation of Janus nanoparticles. Chemical Communications, 2011, 47, 767-769.	2.2	26
192	pH-responsive amphiphilic hybrid random-type copolymers of poly(acrylic acid) and poly(acrylate-POSS): synthesis by ATRP and self-assembly in aqueous solution. Colloid and Polymer Science, 2013, 291, 1803-1815.	1.0	26
193	Nearâ€Infrared Responsive Conjugated Polymers to 1.5 μm and Beyond: Synthesis and Electrochromic Switching Application. Macromolecular Rapid Communications, 2013, 34, 431-436.	2.0	26
194	Carbon nanotubes-bridged-fumed silica as an effective binary nanofillers for reinforcement of silicone elastomers. Composites Science and Technology, 2019, 169, 232-241.	3.8	26
195	Deformation mechanisms of nanoclay-reinforced maleic anhydride-modified polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2759-2768.	2.4	25
196	Synthesis of O,O′-dipalmitoyl chitosan and its amphiphilic properties and capability of cholesterol absorption. Carbohydrate Polymers, 2005, 60, 229-233.	5.1	25
197	Micelle Formation of Amphiphilic Polystyrene-b-poly(N-vinylpyrrolidone) Diblock Copolymer in Methanol and Waterâ^'Methanol Binary Mixtures. Langmuir, 2009, 25, 5557-5564.	1.6	25
198	Chemical controlled reversible gold nanoparticles dissolution and reconstruction at room-temperature. Chemical Communications, 2012, 48, 6136.	2.2	25

#	Article	IF	CITATIONS
199	Thermally stable azobenzene dyes through hybridization with POSS. New Journal of Chemistry, 2013, 37, 735.	1.4	25
200	Origin of Near-Infrared Absorption for Azulene-Containing Conjugated Polymers upon Protonation or Oxidation. Journal of Physical Chemistry B, 2015, 119, 8176-8183.	1.2	25
201	Insights into the nucleation and crystallization analysis of PHB-rubber toughened PLA biocomposites. Composites Communications, 2021, 27, 100894.	3.3	25
202	Composites of multifunctional benzylaminofullerene with low-density polyethylene. Polymer, 2001, 42, 5233-5237.	1.8	24
203	Synthesis and optical properties of tetraphenylmethane-based tetrahedral fluorescent compounds and their water-soluble PEG-linked polymers. Tetrahedron Letters, 2004, 45, 1593-1597.	0.7	24
204	Solvent-Free One-Pot Synthesis of high performance silica/epoxy nanocomposites. Polymer, 2010, 51, 5377-5384.	1.8	24
205	Electrospun poly(vinylidene fluoride) copolymer/octahydroxy-polyhedral oligomeric silsesquioxane nanofibrous mats as ionic liquid host: enhanced salt dissociation and its function in electrochromic device. Electrochimica Acta, 2014, 146, 224-230.	2.6	24
206	Pure Blueâ€Light Emissive Poly(oligofluorenes) with Bifunctional POSS in the Main Chain. Macromolecular Rapid Communications, 2014, 35, 801-806.	2.0	24
207	The Effect of Residual Solvent <i>N,N′</i> â€Dimethylformamide on the Curing Reaction and Mechanical Properties of Epoxy and Lignin Epoxy Composites. Macromolecular Chemistry and Physics, 2016, 217, 1065-1073.	1.1	24
208	Carboxylated Lignin as an Effective Cohardener for Enhancing Strength and Toughness of Epoxy. Macromolecular Materials and Engineering, 2017, 302, 1700341.	1.7	24
209	Dual-Phase Poly(lactic acid)/Poly(hydroxybutyrate)-Rubber Copolymer as High-Performance Shape Memory Materials. ACS Applied Polymer Materials, 2021, 3, 389-399.	2.0	24
210	Subsurface Formation of Amide in Polyethylene-co-Acrylic Acid Film:Â A Potentially Useful Reaction for Tethering Biomolecules to a Solid Support. Macromolecules, 1999, 32, 2149-2155.	2.2	23
211	Fracture behaviour of poly(ethylene terephthalate) fiber toughened epoxy composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1167-1173.	3.8	23
212	In situ formation and ordered assembly of gold nanoclusters to nano-ribbons at the oil/water interface. Journal of Materials Chemistry, 2011, 21, 15167.	6.7	23
213	Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol. Carbohydrate Research, 2011, 346, 495-500.	1.1	23
214	Solution-processable multicolored dithienothiophene-based conjugated polymers for electrochromic applications. European Polymer Journal, 2013, 49, 2446-2456.	2.6	23
215	Study of amino-functionalized mesoporous silica nanoparticles (NH2-MSN) and polyamide-6 nanocomposites co-incorporated with NH2-MSN and organo-montmorillonite. Microporous and Mesoporous Materials, 2013, 170, 226-234.	2.2	22
216	Highly thermally stable cyclotriphosphazene based perfluoropolyether lubricant oil. Tribology International, 2015, 90, 257-262.	3.0	22

#	Article	IF	CITATIONS
217	Overcome the Conflict between Strength and Toughness in Poly(lactide) Nanocomposites through Tailoring Matrix–Filler Interface. Macromolecular Rapid Communications, 2019, 40, e1800047.	2.0	22
218	Highly Washable and Reusable Green Nanofibrous Sorbent with Superoleophilicity, Biodegradability, and Mechanical Robustness. ACS Applied Polymer Materials, 2020, 2, 4825-4835.	2.0	22
219	GOX-hemin nanogels with enhanced cascade activity for sensitive one-step glucose detection. Journal of Materials Chemistry B, 2021, 9, 3509-3514.	2.9	22
220	Small angle X-ray scattering analysis of crazing in rubber toughened polymers: Influence of particle deformation. Polymer, 1998, 39, 659-667.	1.8	21
221	Intermolecular Interaction in Multicomponent Supramolecular Complexes through Hydrogen-Bonding Association. Macromolecules, 2002, 35, 8846-8851.	2.2	21
222	Synthesis, Characterization, and Polymerization Kinetics of Novel Ladder-Like Polysilsesquioxanes Containing Side-Chain Propyl Methacrylate Groups. Macromolecular Chemistry and Physics, 2003, 204, 531-539.	1.1	21
223	Self-Assembly, Optical, and Mechanical Properties of Surfactant-Directed Biphenyl-Bridged Periodic Mesostructured Organosilica Films with Molecular-Scale Periodicity in the Pore Walls. Langmuir, 2009, 25, 832-838.	1.6	21
224	Investigation of thermomechanical properties and matrix–filler interaction on polyimide/graphene oxide composites. Polymer Engineering and Science, 2012, 52, 2530-2536.	1.5	21
225	An amphiphilic-like fluoroalkyl modified SiO2 nanoparticle@Nafion proton exchange membrane with excellent fuel cell performance. Chemical Communications, 2013, 49, 9639.	2.2	21
226	Fluorinated polyhedral oligomeric silsesquioxanes. RSC Advances, 2015, 5, 4547-4553.	1.7	21
227	Highly porous polymer nanofibrous aerogels cross-linked via spontaneous inter-fiber stereocomplexation and their potential for capturing ultrafine airborne particles. Polymer, 2019, 179, 121649.	1.8	21
228	Synthesis, characterization, and curing kinetics of novel ladder-like polysilsesquioxanes containing side-chain maleimide groups. Journal of Polymer Science Part A, 2004, 42, 4036-4046.	2.5	20
229	Synthesis of main-chain hydrogen-bonded supramolecular liquid crystalline complexes: The effects of spacer on thermal behavior of mesophase. Journal of Polymer Science Part A, 2005, 43, 4731-4743.	2.5	20
230	Temperature and pH dual-responsive behavior of polyhedral oligomeric silsesquioxane-based star-block copolymer with poly(acrylic acid-block-N-isopropylacrylamide) as arms. Colloid and Polymer Science, 2012, 290, 507-515.	1.0	20
231	Membrane assisted micro-solid phase extraction of pharmaceuticals with amino and urea-grafted silica gel. Journal of Chromatography A, 2013, 1316, 8-14.	1.8	20
232	Polymer Nanocomposite Hydrogels Exhibiting Both Dynamic Restructuring and Unusual Adhesive Properties. Langmuir, 2013, 29, 7087-7095.	1.6	20
233	Loose yarn of Ag-ZnO-PAN/ITO hybrid nanofibres: Preparation, characterization and antibacterial evaluation. Materials and Design, 2018, 139, 153-161.	3.3	20
234	Metal–Organic Framework-Based Flexible Devices with Simultaneous Electrochromic and Electrofluorochromic Functions. ACS Applied Electronic Materials, 2021, 3, 1489-1495.	2.0	20

#	Article	IF	CITATIONS
235	Synthesis and structure of wholly aromatic liquid-crystalline polyesters containing meta- and ortholinkages. Journal of Polymer Science Part A, 2001, 39, 1242-1248.	2.5	19
236	Crystallization and Phase Behaviors of Multicomponent Supramolecular Complexes through Hydrogen-Bonding Association. Macromolecules, 2003, 36, 5195-5200.	2.2	19
237	Mitochondria targeted composite enzyme nanogels for synergistic starvation and photodynamic therapy. Nanoscale, 2021, 13, 17737-17745.	2.8	19
238	Chirality in Some Liquid Crystalline Association Chain Polymers. Molecular Crystals and Liquid Crystals, 1999, 332, 251-258.	0.3	18
239	Synthesis and characterization of a novel alcohol-soluble ladderlike polysilsesquioxane containing side-chain with amino terminal groups. Reactive and Functional Polymers, 2000, 46, 175-184.	2.0	18
240	Studies on the thermal stability of F- and non-F-containing ladder polyepoxysilsesquioxanes by TGA–FTIR. Thermochimica Acta, 2002, 381, 83-92.	1.2	18
241	Large Area, Facile Oxide Nanofabrication via Step-and-Flash Imprint Lithography of Metal–Organic Hybrid Resins. ACS Applied Materials & Interfaces, 2013, 5, 13113-13123.	4.0	18
242	Robust Oil-Fouling Resistance of Amorphous Cellulose Surface Underwater: A Wetting Study and Application. Langmuir, 2019, 35, 839-847.	1.6	18
243	A water-soluble non-aggregating fluorescent octa-carboxylic acid derived from tetraphenylmethane: synthesis and optical properties. Tetrahedron Letters, 2004, 45, 6173-6177.	0.7	17
244	Direct nanoimprint lithography of Al ₂ O ₃ using a chelated monomer-based precursor. Nanotechnology, 2012, 23, 315304.	1.3	17
245	Tailoring the LCST of PNIPAAMâ€≺i>bâ€PLAâ€≺i>bâ€PNIPAAM Triblock Copolymers via Stereocomplexation. Macromolecular Rapid Communications, 2013, 34, 1761-1766.	2.0	17
246	Configuration-dependent optical properties and acid susceptibility of azulene compounds. Journal of Materials Chemistry C, 2018, 6, 5153-5160.	2.7	17
247	Compatibilization of multicomponent composites through a transitioning phase: Interfacial tensions considerations. Composites Science and Technology, 2018, 164, 34-43.	3.8	17
248	Temperature and pH Responsive Lightâ€Harvesting System Based on AlEâ€Active Microgel for Cell Imaging. Macromolecular Rapid Communications, 2021, 42, e2000716.	2.0	17
249	Entropy-Driven Ultratough Blends from Brittle Polymers. ACS Macro Letters, 2021, 10, 406-411.	2.3	17
250	Enhanced thermoelectric performance of conducting polymer composites by constructing sequential energy-filtering interfaces and energy barriers. Composites Science and Technology, 2022, 221, 109347.	3.8	17
251	A self-regenerating 3D sponge evaporator with a tunable porous structure for efficient solar desalination. Journal of Materials Chemistry A, 2022, 10, 15743-15751.	5.2	17
252	The Effect of Nanofiller on the Thermomechanical Properties of Polyimide/Clay Nanocomposites. Macromolecular Chemistry and Physics, 2008, 209, 643-650.	1.1	16

#	Article	IF	CITATIONS
253	Strong Interface via Weak Interactions: Ultratough and Malleable Polylactic acid/Polyhydroxybutyrate Biocomposites. Macromolecular Rapid Communications, 2022, 43, e2100619.	2.0	16
254	Cholesterol-imprinted polymer receptor prepared by a hybrid imprinting method. Polymer International, 2005, 54, 1268-1274.	1.6	15
255	Tailoring the Diameters of Polyaniline Nanofibers for Sensor Application. ACS Omega, 2017, 2, 6506-6513.	1.6	15
256	Speed-Induced Extensibility Elastomers with Good Resilience and High Toughness. Macromolecules, 2021, 54, 3358-3365.	2.2	15
257	Pretransitional behavior above the nematic-isotropic phase transition of an auxetic trimer liquid crystal. Physical Review E, 1999, 60, 4980-4982.	0.8	14
258	pH-Controllable cyclic threading/dethreading of polypseudorotaxane obtained from cyclodextrins and poly(amino ester). Polymer, 2005, 46, 3355-3362.	1.8	14
259	Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers. Scientific Reports, 2017, 7, 3366.	1.6	14
260	Self-Healable, Fast Responsive Poly(ï‰-Pentadecalactone) Thermogelling System for Effective Liver Cancer Therapy. Frontiers in Chemistry, 2019, 7, 683.	1.8	14
261	Designing ultratough, malleable and foldable biocomposites for robust green electronic devices. Journal of Materials Chemistry A, 2022, 10, 1497-1505.	5.2	14
262	Persistence lengths of aromatic polyamides: a computer simulation approach. Macromolecular Theory and Simulations, 1995, 4, 289-304.	0.6	13
263	Self-Assembly of a Hydrogen-Bonded Association Chain Liquid Crystalline Polymer (LCP). Macromolecular Chemistry and Physics, 2002, 203, 85-88.	1.1	13
264	Performance enhancement of polylactide by nanoblending with POSS and graphene oxide. Polymer Composites, 2014, 35, 118-126.	2.3	13
265	Branched Poly(<scp>l</scp> -lysine)-Derived Nitrogen-Containing Porous Carbon Flake as the Metal-Free Electrocatalyst toward Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 3317-3326.	2.5	13
266	Fracture and toughening behavior of aramid fiber/epoxy composites. Polymer Composites, 2005, 26, 333-342.	2.3	12
267	Effect of Heterocyclic Based Organoclays on the Properties of Polyimide–Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2005, 5, 1148-1157.	0.9	12
268	π–π interactions mediated self-assembly of gold nanoparticles into single crystalline superlattices in solution. RSC Advances, 2015, 5, 90766-90771.	1.7	12
269	Synthesis, optical, and electrochemical properties of conjugated oligomers derived from 4-bromo-4 \hat{a} \in 2-() Tj E	TQq1 1 0.78 0.7	34314 rgBT
270	Ab Initio Investigation of the Structural and Electronic Properties of the Molecules and Crystals of Tetraphenyl Derivatives of Group IVA Elements. Journal of Physical Chemistry B, 2004, 108, 17361-17368.	1.2	11

#	Article	IF	CITATIONS
271	Morphologies and electrical properties of electrospun poly[(<i>R</i>)â€3â€hydroxybutyrateâ€ <i>co</i> â€(<i>R</i>)â€3â€hydroxyvalerate]/ multiwalled carbon nanotul fibers. Journal of Applied Polymer Science, 2010, 116, 1030-1035.	b e .s	11
272	Diverse-shaped tin dioxide nanoparticles within a plastic waste-derived three-dimensional porous carbon framework for super stable lithium-ion storage. Science of the Total Environment, 2022, 815, 152900.	3.9	11
273	Synthesis and characterization of rigid-chain liquid-crystalline polymers containing laterally attached side rods. Journal of Polymer Science Part A, 2001, 39, 1288-1294.	2.5	10
274	Poly(propylene)/Clay Nanocomposites Prepared by Reactive Compounding with an Epoxy Based Masterbatch. Macromolecular Materials and Engineering, 2005, 290, 1029-1036.	1.7	10
275	Thermally stable red electroluminescent hybrid polymers derived from functionalized silsesquioxane and 4,7â€bis(3â€ethylhexylâ€2â€thienyl)â€2,1,3â€benzothiadiazole. Journal of Polymer Science Part A, 2009, 47, 5661-5670.	2.5	10
276	Grafting polyamide 6 onto multi-walled carbon nanotubes using microwave irradiation. Polymer International, 2010, 59, 1346-1349.	1.6	10
277	Protonation induced shifting of electron-accepting centers in intramolecular charge transfer chromophores: a theoretical study. Physical Chemistry Chemical Physics, 2014, 16, 20221-20227.	1.3	10
278	Construction of a hierarchical multiscale conducting network for enhanced thermoelectric response in organic PEDOT:PSS based nanocomposites. Journal of Materiomics, 2021, 7, 34-39.	2.8	10
279	Conducting blends of polyaniline and aromatic main-chain liquid crystalline polymer, XYDAR SRT-900. Synthetic Metals, 2001, 123, 69-72.	2.1	9
280	Synthesis, characterization, and thermal properties of ladderlike polyepoxysiloxanes. Journal of Polymer Science Part A, 2001, 39, 2215-2222.	2.5	9
281	Structures and properties of liquid-crystalline polymers based on laterally attached oligop-phenylenes. Journal of Polymer Science Part A, 2005, 43, 3394-3402.	2.5	9
282	Effects of Ca on grain boundary cohesion in Au ballbonding wire. Thin Solid Films, 2006, 504, 346-349.	0.8	9
283	The Effect of Different Clay Dispersion Methods on the Properties of Polyurethane/Clay Nanocomposites. Australian Journal of Chemistry, 2013, 66, 1039.	0.5	9
284	A new aspect of cyclopentadithiophene based polymers: narrow band gap polymers upon protonation. Chemical Communications, 2015, 51, 13229-13232.	2.2	9
285	Synthesis and properties of cyclotriphosphazene and perfluoropolyetherâ€based lubricant with polar functional groups. Lubrication Science, 2017, 29, 31-42.	0.9	9
286	Liquid polyoctahedral silsesquioxanes as an effective and facile reinforcement for liquid silicone rubber. Journal of Applied Polymer Science, 2019, 136, 46996.	1.3	9
287	Effect of surface coupling agents on the mechanical behaviour of polypropylene/silica composites: a molecular dynamics study. Journal of Polymer Research, 2021, 28, 1.	1.2	9
288	Improvement of LPS-based command surfaces: effect of inserting a flexible disiloxane segment into the azo side chain on photo-driven response. Liquid Crystals, 2000, 27, 1683-1689.	0.9	8

#	Article	IF	CITATIONS
289	Hydrogenâ€Bond Directed Selfâ€Organized Lamellar Nanostructured Benzene Bridgedâ€Polysilsesquioxane Freeâ€Standing Monolithic Structures via solâ€gel Method. Soft Materials, 2009, 7, 79-92.	0.8	8
290	Temperature and pH Dualâ€Responsive Behavior of Dendritic Poly(<i>N</i> â€isopropylacrylamide) with a Polyoligomeric Silsesquioxane Core and Poly(2â€hydroxyethyl methacrylate) Shell. Macromolecular Chemistry and Physics, 2013, 214, 396-404.	1.1	8
291	Implications for Auxetic Response in Liquid Crystalline Polymers: Xâ€Ray Scattering and Spaceâ€Filling Molecular Modeling. Physica Status Solidi (B): Basic Research, 2020, 257, 2000261.	0.7	8
292	Transparent low-voltage-driven soft actuators with silver nanowires Joule heaters. Polymer Chemistry, 2021, 12, 5251-5256.	1.9	8
293	Tailoring Crystalline Morphology via Entropy-Driven Miscibility: Toward Ultratough, Biodegradable, and Durable Polyhydroxybutyrate. Macromolecules, 2022, 55, 5527-5534.	2.2	8
294	Orientational susceptibility and elastic constants near the nematic-isotropic phase transition for trimers with terminal-lateral-lateral-terminal connections. Physical Review E, 1998, 58, 2041-2046.	0.8	7
295	Synthesis and Characterization of Liquid Crystal Trimers Based on Laterally Attached Terphenyls. Molecular Crystals and Liquid Crystals, 1999, 332, 243-250.	0.3	7
296	Morphology and Mechanical Properties of Epoxy/Alumina Nanocomposites. Key Engineering Materials, 2006, 312, 233-236.	0.4	7
297	Absorption and Raman Study for POSS-Oligophenylene Nanohybrid Molecules. Journal of Nanoscience and Nanotechnology, 2006, 6, 3882-3887.	0.9	7
298	Photocurable epoxy/cubic silsesquioxane hybrid materials for polythiourethane: Failure mechanism of adhesion under weathering. Journal of Applied Polymer Science, 2008, 108, 181-188.	1.3	7
299	Shear-induced conformation change in $\hat{i}\pm$ -crystalline nylon6. Applied Physics Letters, 2014, 105, .	1.5	7
300	Synthesis and mesomorphic properties of a novel ladder-like 1,4-phenylene-bridged liquid crystalline polysiloxane containing ester-based mesogenic side groups. Liquid Crystals, 2001, 28, 35-43.	0.9	6
301	Low relative dielectric permittivities of polyimides and copolyimides derived from non-coplanar diamines and 4,4′-(hexafluoroisopropyl)diphthalic anhydride. Plastics, Rubber and Composites, 2002, 31, 295-299.	0.9	6
302	Thermally stable glassy luminescent cyclotriphosphazenes. European Polymer Journal, 2013, 49, 2404-2414.	2.6	6
303	Uniform Polyaniline Nanotubes Formation via Frozen Polymerization and Application for Oxygen Reduction Reactions. Macromolecular Chemistry and Physics, 2015, 216, 977-984.	1.1	6
304	Synthesis and Interfacial Properties of Opticallyâ€Active Photonic Nanocomposites with Single Nanoparticle Dispersion at High Solids Loading. Advanced Materials Interfaces, 2016, 3, 1600334.	1.9	6
305	Fatty Acid-Based Coacervates as a Membrane-free Protocell Model. Bioconjugate Chemistry, 2022, 33, 444-451.	1.8	6
306	Rigid rod polyamides based on 2,2′,6,6′-tetrasubstituted biphenyls: Synthesis, characterization, and structures. Journal of Applied Polymer Science, 1994, 53, 561-574.	1.3	5

#	Article	IF	CITATIONS
307	Optical Properties of Electrospun Nanofibers of Conducting Polymer-Based Blends. Journal of Nanoscience and Nanotechnology, 2006, 6, 3997-4000.	0.9	5
308	Facile anchoring mussel adhesive mimic tentacles on biodegradable polymer cargo carriers via self-assembly for microplastic-free cosmetics. Journal of Colloid and Interface Science, 2022, 612, 13-22.	5.0	5
309	Inâ€situ deformation studies of rubber toughened PMMA: A SAXS analysis of the response of coreâ€shell particles to deformation. Macromolecular Symposia, 1996, 112, 115-122.	0.4	4
310	Synthesis and characterization of a metal chelate-bridged quasi-ladder main chain discotic liquid crystals, 2001, 28, 477-481.	0.9	4
311	Synthesis and characterization of a novel oligosiloxane containing alternative ladderlike structure via charge-transfer interaction. Polymer International, 2001, 50, 643-650.	1.6	4
312	A Unique Spherical Molecular Host withD2dSymmetry. A Novel Intramolecular Kinetic Equilibrium in Metal Ion Complexation between Two Crown Ethers. Organic Letters, 2002, 4, 3911-3914.	2.4	4
313	Supramolecular Assembled Nanostructure Containing Cubic Silsesquioxane in Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2006, 6, 3955-3959.	0.9	4
314	PREPARATION, MORPHOLOGY AND MECHANICAL PROPERTIES OF EPOXY NANOCOMPOSITES WITH ALUMINA FILLERS. International Journal of Modern Physics B, 2010, 24, 136-147.	1.0	4
315	Covalent Incorporation of Ethylenediamine Ligands in the Framework of Periodic Mesoporous Organosilica Nanostructure. Soft Materials, 2010, 8, 183-196.	0.8	4
316	Fundamentals of Polymers and Polymer Composite. , 2015, , 3-42.		4
317	Regiospecific protonation of organic chromophores. Physical Chemistry Chemical Physics, 2016, 18, 18758-18766.	1.3	4
318	Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer. Nanotechnology, 2017, 28, 445404.	1.3	4
319	Highly Thermally Resistant Polyhedral Oligomeric Silsesquioxanes Lubricating Oil Prepared via a Thiol-Ene Click Reaction. Science of Advanced Materials, 2014, 6, 1553-1561.	0.1	4
320	One-Step Synthesis of Oval Shaped Silica/Epoxy Nanocomposite: Process, Formation Mechanism and Properties. , 0, , .		4
321	Synthesis and characterization of a novel polyorganosiloxane having a bigger sized tubular structure and its supramolecular clathrate. Polymers for Advanced Technologies, 2002, 13, 188-195.	1.6	3
322	Synthesis and optical characteristics of organic light-emitting dot based on well-defined octa-functionalized silsesquioxane. Journal of Nanoparticle Research, 2010, 12, 2787-2798.	0.8	3
323	Hydrothermally Stable Periodic Mesoporous Ethane-Silica and Bimodal Mesoporous Nanostructures. Journal of Nanoscience and Nanotechnology, 2011, 11, 8481-8487.	0.9	3
324	Structural and Optical Properties of Titanium Functionalized Periodic Mesostructured Organosilica Framework via Evaporation-Induced Self-Assembly Method. Journal of Nanoscience and Nanotechnology, 2013, 13, 2771-2776.	0.9	3

#	Article	IF	CITATIONS
325	Crossâ€linking Si _{<i>x</i>} O _{<i>y</i>} Cages with Carbon by Thermally Annealing Polyhedral Oligomeric Silsesquioxane: Structures, Morphology, and Electrochemical Properties as Lithiumâ€lon Battery Anodes. ChemElectroChem, 2017, 4, 49-55.	1.7	3
326	The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials, 2004, 25, 5659-5666.	5.7	3
327	Curing Studies of Ladder-Like Poly(allylsilsesquioxane) and its copolymers by Differential Scanning Calorimetry. Polymer Bulletin, 2004, 52, 251-258.	1.7	2
328	Melt-Processable Poly(Etherimide) Nanocomposites From Natural Montmorillonite. Materials Research Innovations, 2005, 9, 46-47.	1.0	2
329	Self-Assembly Synthesis of Mesoscopically Ordered Biphenyl-Bridged Organosilica Films with Molecular Periodicity in the Pore Walls. Journal of Nanoscience and Nanotechnology, 2008, 8, 6381-6386.	0.9	2
330	Uniformly Dispersed Nanoparticles in Modified Polyimides Exhibiting High Thermal Stability and Bright Emissions in the Telecommunication Window. ACS Applied Nano Materials, 2021, 4, 7134-7144.	2.4	2
331	The crystallization of decanoic acid/dopamine supramolecular self-assemblies in the presence of coacervates. Journal of Colloid and Interface Science, 2022, 615, 759-767.	5.0	2
332	Structure of semirigid polyamides with bulky groups in backbone. Journal of Applied Polymer Science, 1999, 72, 309-319.	1.3	1
333	Micro- and nanomorphologies of isotactic polystyrene revealed by PLM, AFM, and TEM. Journal of Applied Polymer Science, 2002, 86, 422-427.	1.3	1
334	Fracture Behavior of Polypropylene/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2006, 6, 3969-3972.	0.9	1
335	ORGANIC–INORGANIC HYBRID NANOPARTICLES WITH QUANTUM CONFINEMENT EFFECT. International Journal of Nanoscience, 2009, 08, 185-190.	0.4	1
336	Aggregation induced polyelectrolyte multilayer film containing cubic silsesquioxane nanoparticles. Journal of Nanoparticle Research, 2010, 12, 2865-2874.	0.8	1
337	Composites, Nanocomposites and Hybrid Materials. , 2016, , 21-36.		1
338	Supramolecular (Hydrogen-Bonded and Halogen-Bonded) Liquid Crystalline Polymers. , 2016, , 391-409.		1
339	Mechanical Properties and Fracture Performance of Nanoclay-reinforced Polypropylene Modified with Maleic Anhydride. , 2004, , 713-718.		0
340	<i>A Special Section on</i> Selected Peer-Reviewed Papers from the Symposium on Polymer Nano-Structured Materials—3rd International Conference on Materials for Advanced Technologies (ICMAT2005), Singapore. Journal of Nanoscience and Nanotechnology, 2006, 6, 1-1.	0.9	0
341	Star-branched cationic light-emitting dot with silsesquioxane core, synthesis, and light scattering studies. Polymer Bulletin, 2012, 68, 2131-2144.	1.7	0
342	EMC analysis and characterization of new nanocomposite laminates for aeronautic application. , 2015,		0