Febee R Louka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/153297/publications.pdf

Version: 2024-02-01

22 papers 488 citations

623734 14 h-index 677142 22 g-index

22 all docs 22 docs citations

22 times ranked 673 citing authors

#	Article	IF	CITATIONS
1	Coordination Polymers in Dicyanamido-Cadmium(II) with Diverse Network Dimensionalities. Crystals, 2021, 11, 181.	2.2	6
2	Copper(II) Complexes with Tetradentate Piperazine-Based Ligands: DNA Cleavage and Cytotoxicity. Inorganics, 2021, 9, 12.	2.7	16
3	Stereochemical Geometries and Photoluminescence in Pseudo-Halido-Zinc(II) Complexes. Structural Comparison between the Corresponding Cadmium(II) Analogs. Inorganics, 2021, 9, 53.	2.7	3
4	A Mesocosm Assessment of the Effect of Bioturbation by the Ghost Shrimp (<i>Lepidophthalmus) Tj ETQq0 0 0 0 Toxicology and Chemistry, 2020, 39, 637-647.</i>	gBT /Over 4.3	lock 10 Tf 50 1
5	Five-Coordinated Geometries from Molecular Structures to Solutions in Copper(II) Complexes Generated from Polydentate-N-Donor Ligands and Pseudohalides. Molecules, 2020, 25, 3376.	3.8	11
6	Steric Effects of Alkyl Substituents at N-Donor Bidentate Amines Direct the Nuclearity, Bonding and Bridging Modes in Isothiocyanato-Copper(II) Coordination Compounds. Crystals, 2019, 9, 38.	2.2	5
7	Copper(<scp>ii</scp>) complexes based on tripodal pyridyl amine derivatives as efficient anticancer agents. New Journal of Chemistry, 2019, 43, 6186-6196.	2.8	19
8	Efficient Artificial Nucleases for Mediating DNA Cleavage Based on Tuning the Steric Effect in the Pyridyl Derivatives of Tripod Tetraamineâ€Cobalt(II) Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 2322-2338.	2.0	22
9	Copper(II) complexes based on tripodal pyrazolyl amines: Synthesis, structure, magnetic properties and anticancer activity. Journal of Inorganic Biochemistry, 2018, 180, 39-46.	3.5	37
10	Croconato-bridged copper(<scp>ii</scp>) complexes: synthesis, structure and magnetic characterization. New Journal of Chemistry, 2017, 41, 3846-3856.	2.8	5
11	Individual and Combined Effects of Petroleum Hydrocarbons Phenanthrene and Dibenzothiophene on Reproductive Behavior in the Amphipod Hyalella azteca. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	3
12	Cobalt(II) and copper(II) covalently and non-covalently dichlorido-bridged complexes of an unsymmetrical tripodal pyrazolyl-pyridyl amine ligand: Structures, magnetism and cytotoxicity. Inorganica Chimica Acta, 2016, 451, 102-110.	2.4	23
13	Magneto-structural properties of carbonato-bridged copper(<scp>ii</scp>) complexes: fixation of atmospheric CO ₂ . New Journal of Chemistry, 2015, 39, 5944-5952.	2.8	22
14	Synthesis, structure and magnetic characterization of dinuclear copper(<scp>ii</scp>) complexes bridged by bicompartmental phenolate. RSC Advances, 2015, 5, 87139-87150.	3.6	32
15	Polynuclear and polymeric squarato-bridged coordination compounds. CrystEngComm, 2015, 17, 7604-7617.	2.6	15
16	Efficient hydrolytic cleavage of plasmid DNA by chloro-cobalt(ii) complexes based on sterically hindered pyridyl tripod tetraamine ligands: synthesis, crystal structure and DNA cleavage. Dalton Transactions, 2014, 43, 10086.	3.3	69
17	DNA Cleavage by Structurally Characterized Dinuclear Copper(II) Complexes Based on Triazine. European Journal of Inorganic Chemistry, 2011, 2011, 3469-3479.	2.0	27

#	Article	IF	CITATION
19	Thiocyanato-copper(II) complexes derived from a tridentate amine ligand and from alanine. Transition Metal Chemistry, 2010, 35, 613-619.	1.4	38
20	Pseudohalide copper(II) complexes derived from polypyridyl ligands: Synthesis and characterization. Journal of Molecular Structure, 2009, 919, 196-203.	3.6	61
21	μâ€1,3―(<i>trans</i>) and μâ€1,2―(<i>cis</i>) Bonding in Squaratoâ€Bridged Dinuclear Copper(II) and Nic Complexes Derived from Polypyridyl Amines. European Journal of Inorganic Chemistry, 2008, 2008, 3709-3717.	kel(II) 2.0	34
22	Cobalt(III) complexes of tripod amines. Kinetics of aquation of dichloro [$<$ b $<$ i $>$ N $<$ i $>$ (i $>$ 0)- $<$ 0- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10- $<$ 10-	2.2	5