List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1532826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectroscopic studies of Nd3+-doped alkali fluoroborophosphate glasses. Optical Materials, 1998, 10, 245-252.	1.7	148
2	White light emission and color tunability of dysprosium doped barium silicate glasses. Journal of Luminescence, 2016, 169, 121-127.	1.5	139
3	Luminescence characterization of Eu 3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications. Journal of Luminescence, 2014, 156, 80-86.	1.5	124
4	Optical studies of Sm3+ ions doped Zinc Alumino Bismuth Borate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 125, 53-60.	2.0	122
5	Spectral characterisation of Sm3+ ions doped Oxy-fluoroborate glasses for visible orange luminescent applications. Journal of Luminescence, 2014, 154, 410-424.	1.5	121
6	Luminescent studies of Dy3+ ion in alkali lead tellurofluoroborate glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 78-84.	1.1	119
7	Optical absorption and luminescence characteristics of Dy3+ doped Zinc Alumino Bismuth Borate glasses for lasing materials and white LEDs. Journal of Luminescence, 2013, 139, 119-124.	1.5	107
8	Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Optical Materials, 2017, 72, 31-39.	1.7	101
9	Lasing potentialities and white light generation capabilities of Dy3+ doped oxy-fluoroborate glasses. Journal of Luminescence, 2014, 153, 382-392.	1.5	99
10	Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications. Journal of Alloys and Compounds, 2017, 708, 911-921.	2.8	99
11	Photoluminescence and energy transfer studies of Dy3+ ions doped lithium lead alumino borate glasses for w-LED and laser applications. Journal of Luminescence, 2017, 192, 832-841.	1.5	99
12	Spectroscopic and photoluminescence characteristics of Sm3+ doped calcium aluminozincate phosphor for applications in w-LED. Ceramics International, 2017, 43, 7401-7407.	2.3	94
13	Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses. Journal of Physics and Chemistry of Solids, 2013, 74, 1308-1315.	1.9	87
14	A novel red emitting Eu3+ doped calcium aluminozincate phosphor for applications in w-LEDs. Journal of Alloys and Compounds, 2017, 697, 367-373.	2.8	84
15	Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. Journal of Alloys and Compounds, 2019, 787, 503-518.	2.8	84
16	Red light emitting BaNb2O6:Eu3+ phosphor for solid state lighting applications. Journal of Alloys and Compounds, 2015, 622, 97-101.	2.8	82
17	Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications. Materials Research Bulletin, 2019, 110, 159-168.	2.7	76
18	Visible luminescence characteristics of Sm3+ doped Zinc Alumino Bismuth Borate glasses. Journal of Luminescence, 2014, 146, 288-294.	1.5	75

#	Article	IF	CITATIONS
19	Photoluminescence investigations on Sm3+ ions doped borate glasses for tricolor w-LEDs and lasers. Materials Research Bulletin, 2018, 100, 206-212.	2.7	73
20	Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices. Ceramics International, 2013, 39, 8459-8465.	2.3	71
21	Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses. Optical Materials, 2013, 36, 362-371.	1.7	71
22	Spectroscopic investigations of Nd3+ doped Lithium Lead Alumino Borate glasses for 1.06Âμm laser applications. Optical Materials, 2018, 75, 127-134.	1.7	70
23	Spectroscopic and optical properties of Nd3+ doped fluorine containing alkali and alkaline earth zinc-aluminophosphate optical glasses. Physica B: Condensed Matter, 2009, 404, 3717-3721.	1.3	68
24	Spectroscopic studies of Dy3+ doped borate glasses for cool white light generation. Materials Research Bulletin, 2018, 104, 77-82.	2.7	67
25	Dy3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses for LASER and white LED applications. Optical Materials, 2016, 62, 569-577.	1.7	65
26	Judd-Ofelt parametrization and radiative analysis of Dy3+ ions doped Sodium Bismuth Strontium Phosphate glasses. Journal of Luminescence, 2019, 215, 116693.	1.5	64
27	Spectroscopic studies of single near ultraviolet pumped Tb3+ doped Lithium Lead Alumino Borate glasses for green lasers and tricolour w-LEDs. Journal of Luminescence, 2018, 194, 56-63.	1.5	62
28	Spectral studies of Eu3+ doped lithium lead alumino borate glasses for visible photonic applications. Optics and Laser Technology, 2018, 108, 434-440.	2.2	59
29	Holmium doped Lead Tungsten Tellurite glasses for green luminescent applications. Journal of Luminescence, 2015, 163, 64-71.	1.5	57
30	Pr3+ doped lead tungsten tellurite glasses for visible red lasers. Ceramics International, 2014, 40, 6261-6269.	2.3	56
31	Visible, Up-conversion and NIR (~1.5μm) luminescence studies of Er3+ doped Zinc Alumino Bismuth Borate glasses. Journal of Luminescence, 2015, 163, 55-63.	1.5	55
32	Intense green emission from Tb3+ ions doped zinc lead alumino borate glasses for laser and w-LEDs applications. Optical Materials, 2018, 84, 318-323.	1.7	55
33	Reddish-orange emission from Pr3+ doped zinc alumino bismuth borate glasses. Physica B: Condensed Matter, 2013, 428, 36-42.	1.3	54
34	Spectroscopic studies of Nd3+ doped lead tungsten tellurite glasses for the NIR emission at 1062nm. Optical Materials, 2015, 39, 8-15.	1.7	53
35	Dy3+ ions doped oxy-fluoro boro tellurite glasses for the prospective optoelectronic device applications. Journal of Alloys and Compounds, 2018, 762, 814-826.	2.8	52
36	Realization of warm white light and energy transfer studies of Dy3+/Eu3+ co-doped Li2O-PbO-Al2O3-B2O3 glasses for lighting applications. Journal of Luminescence, 2020, 222, 117166.	1.5	52

#	Article	IF	CITATIONS
37	Tb 3+ doped Zinc Alumino Bismuth Borate glasses for green emitting luminescent devices. Journal of Luminescence, 2014, 156, 180-187.	1.5	50
38	Investigation on structural and luminescence features of Dy3+ ions doped alkaline-earth boro tellurite glasses for optoelectronic devices. Optical Materials, 2018, 85, 200-210.	1.7	48
39	Effect of Sm3+ ions concentration on borosilicate glasses for reddish orange luminescent device applications. Journal of Non-Crystalline Solids, 2019, 513, 152-158.	1.5	48
40	Judd-Ofelt itemization and influence of energy transfer on Sm3+ ions activated B2O3–ZnF2–SrO–SiO2 glasses for orange-red emitting devices. Journal of Luminescence, 2021, 229, 117651.	1.5	47
41	Synthesis optimisation and efficiency enhancement in Eu3+ doped barium molybdenum titanate phosphors for w-LED applications. Materials Research Bulletin, 2022, 150, 111753.	2.7	46
42	Spectroscopic studies of Sm 3+ ions doped alkaline-earth chloro borate glasses for visible photonic applications. Materials Research Bulletin, 2018, 105, 45-54.	2.7	44
43	Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs. Journal of Luminescence, 2018, 202, 475-483.	1.5	43
44	Spectroscopic investigations on Dy3+ ions doped zinc lead alumino borate glasses for photonic device applications. Journal of Rare Earths, 2019, 37, 52-59.	2.5	43
45	White light emission from Dy3+-doped ZnOÂ+ÂBi2O3Â+ÂBaF2Â+ÂB2O3Â+ÂTeO2 glasses: Structural and spectroscopic properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118568.	2.0	42
46	Spectroscopic studies and lasing potentialities of Sm3+ ions doped single alkali and mixed alkali fluoro tungstentellurite glasses. Optics and Laser Technology, 2019, 111, 176-183.	2.2	41
47	Color tunability and energy transfer studies of Dy3+/ Eu3+ co-doped calcium aluminozincate phosphor for lighting applications. Materials Research Bulletin, 2019, 116, 79-88.	2.7	40
48	Electron paramagnetic resonance and optical absorption spectra of Fe3+ ions in alkali cadmium borosulphate glasses. Solid State Communications, 1995, 96, 701-705.	0.9	38
49	Tb3+ ion induced colour tunability in calcium aluminozincate phosphor for lighting and display devices. Journal of Alloys and Compounds, 2020, 826, 154212.	2.8	37
50	Spectroscopic investigations of dysprosium ions doped oxy chloro boro tellurite glasses for visible photonic device applications. Journal of Alloys and Compounds, 2019, 789, 744-754.	2.8	34
51	Orange color emitting Sm3+ ions doped borosilicate glasses for optoelectronic device applications. Optical Materials, 2020, 107, 110070.	1.7	34
52	Concentration-dependent reddish-orange photoluminescence studies of Sm3+ ions in borosilicate glasses. Optical Materials, 2020, 109, 110356.	1.7	30
53	Photoluminescence investigations on Dy3+ ions doped Zinc Lead Tungsten Tellurite glasses for optoelectronic devices. Journal of Non-Crystalline Solids, 2018, 495, 85-94.	1.5	29
54	Near UV based Dy3+ ions doped alkaline-earth chloro borate glasses for white LED's and visible lasers. Optics and Laser Technology, 2019, 119, 105646.	2.2	29

#	Article	IF	CITATIONS
55	Photoluminescence study of Sm3+ doped Zinc Lead Tungsten Tellurite glasses for reddish-orange photonic device applications. Optical Materials, 2018, 84, 375-382.	1.7	28
56	Enhanced red down-conversion luminescence and high color purity from flux assisted Eu3+ doped calcium aluminozincate phosphor. Journal of Luminescence, 2018, 202, 461-468.	1.5	28
57	Judd-Ofelt Parameterization and Luminescence Characterization of Dy3+ Doped Oxyfluoride Lithium Zinc Borosilicate Glasses for Lasers and w-LEDs. Journal of Non-Crystalline Solids, 2020, 544, 120187.	1.5	28
58	Compositional dependence of red luminescence from Eu3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses. Optical Materials, 2017, 73, 260-267.	1.7	27
59	Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses. Optical Materials, 2018, 79, 21-32.	1.7	27
60	Synthesis optimization, photoluminescence and thermoluminescence studies of Eu3+ doped calcium aluminozincate phosphor. Journal of Alloys and Compounds, 2019, 802, 129-138.	2.8	27
61	A study on up-conversion and energy transfer kinetics of KGdF4:Yb3+/Er3+ nanophosphors. Journal of Molecular Structure, 2020, 1205, 127647.	1.8	26
62	Spectroscopic and luminescence properties of Ho3+ ions doped Barium Lead Alumino Fluoro Borate glasses for green laser applications. Solid State Sciences, 2020, 102, 106175.	1.5	24
63	Effective energy transfer from Dy3+ to Tb3+ ions in thermally stable KZABS glasses for intense green emitting device applications. Journal of Luminescence, 2021, 239, 118325.	1.5	24
64	Sensitization of Nd3+ by 4f-5d transition of Ce3+ in Ba2Y(BO3)2Cl phosphor for the prospective NIR applications. Journal of Luminescence, 2018, 202, 1-6.	1.5	23
65	Structural and luminescence characteristics of thermally stable Dy3+ doped oxyfluoride strontium zinc borosilicate glasses for photonic device applications. Optics and Laser Technology, 2022, 154, 108328.	2.2	23
66	Morphological and luminescence studies on KGdF4:Yb3+/Tb3+ up-conversion nanophosphors. Materials Chemistry and Physics, 2018, 219, 13-21.	2.0	22
67	Effective sensitization of Eu3+ visible red emission by Sm3+ in thermally stable potassium zinc alumino borosilicate glasses for photonic device applications. Journal of Luminescence, 2022, 244, 118689.	1.5	22
68	Absorption and emission spectra of Pr3+-doped mixed alkali fluorophosphate optical glasses. Journal of Materials Science Letters, 2001, 20, 737-740.	0.5	21
69	Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications. Optical Materials, 2018, 78, 457-464.	1.7	21
70	Thermal, Up-Conversion and Near-Infrared Luminescence studies of Erbium ions doped Alkaline-Earth Boro Tellurite glasses. Solid State Sciences, 2019, 97, 106016.	1.5	21
71	Concentration dependent photoluminescence studies of Dy3+ doped Bismuth Boro-Tellurite glasses for lasers and wLEDs. Optical Materials, 2020, 109, 110328.	1.7	21
72	Sensitization of Er3+ NIR emission using Yb3+ ions in alkaline-earth chloro borate glasses for fiber laser and optical fiber amplifier applications. Materials Research Bulletin, 2021, 136, 111144.	2.7	21

#	Article	IF	CITATIONS
73	Electron Paramagnetic Resonance and optical absorption spectra of Cr(III) ions in alkali cadmium borosulphate glasses. Optical Materials, 1995, 4, 717-721.	1.7	20
74	Luminescence spectral studies of Tm3+ ions doped Lead Tungsten Tellurite glasses for visible Red and NIR applications. Journal of Luminescence, 2016, 175, 225-231.	1.5	19
75	Sensitization of Yb3+ by Nd3+ emission in alkaline-earth chloro borate glasses for laser and fiber amplifier applications. Journal of Alloys and Compounds, 2019, 771, 980-986.	2.8	19
76	Broadband NIR emission at 1.53 μ m in trivalent erbium ions doped SrO-Al2O3-B2O3-BaCl2-10TeO2 glasses for optical fiber and NIR laser applications. Journal of Non-Crystalline Solids, 2021, 567, 120937.	1.5	19
77	Pr3+ ions doped single alkali and mixed alkali fluoro tungsten tellurite glasses for visible red luminescent devices. Journal of Non-Crystalline Solids, 2018, 498, 345-351.	1.5	18
78	Photoluminescence down-shifting studies of thermally stable Eu3+ ions doped borosilicate glasses for visible red photonic device applications. Journal of Non-Crystalline Solids, 2022, 575, 121184.	1.5	18
79	Electron Paramagnetic Resonance (EPR) and optical absorption spectra of VO2+ ions in K2SO4î—,Na2SO4î—,ZnSO4 glasses. Optical Materials, 1995, 4, 723-728.	1.7	17
80	Spectroscopic properties of deep red emitting Tm3+ doped ZnPbWTe glasses for optoelectronic and laser applications. Journal of Non-Crystalline Solids, 2019, 516, 82-88.	1.5	17
81	Spectral characterization of Dy3+ ions doped phosphate glasses for yellow laser applications. Journal of Non-Crystalline Solids, 2021, 555, 120538.	1.5	16
82	Physical, structural and optical characterization of Dy3+ doped ZnF2-WO2-B2O3-TeO2 glasses for opto-communication applications. Optical Materials, 2021, 114, 110937.	1.7	16
83	Judd–Ofelt parametrization and radiative transitions analysis of Tm3+ doped alkali chloroborophosphate glasses. Optical Materials, 1999, 12, 459-465.	1.7	15
84	Strong structural phase sensitive rare-earth photoluminescence color flips in KLaF ₄ :RE ³⁺ (RE ³⁺ = Eu ³⁺ ,) Tj ETQq0 0 0 rgBT /Overlock 10) Tf 150 29	7 Tdt≴Er
85	Radiative emission analysis of Sm3+ ions doped borosilicate glasses for visible orange photonic devices. Journal of Non-Crystalline Solids, 2021, 572, 121106.	1.5	14
86	Up-conversion luminescence and EPR properties of KGdF4:Yb3+/Tm3+ nanophosphors. Optik, 2020, 208, 164538.	1.4	13
87	Luminescence features of Mn2+-doped Zn2SiO4: A green color emitting phosphor for solid-state lighting. Optik, 2021, 225, 165715.	1.4	13
88	Photoluminescence properties of Sm3+ ions doped Bismuth Boro tellurite glasses. Solid State Sciences, 2021, 116, 106609.	1.5	13
89	Linear and nonlinear photoluminescence from thermally stable KYF4:Eu3+ cubic nanocrystals. Journal of Alloys and Compounds, 2021, 885, 160893.	2.8	13
90	Structural, thermal, optical and luminescence properties of Dy3+ ions doped Zinc Potassium Alumino Borate glasses for optoelectronics applications. Journal of Non-Crystalline Solids, 2022, 588, 121613.	1.5	13

#	Article	IF	CITATIONS
91	Effect of samarium ions concentration on physical, optical and photoluminescence properties of Oxy-Fluoro Boro Tellurite glasses. Optical Materials, 2020, 109, 110368.	1.7	12
92	NIR photoluminescence studies of Nd3+doped B2O3–BaF2–PbF2–Al2O3 glasses for 1.063Âμm laser applications. Journal of Luminescence, 2021, 229, 117701.	1.5	12
93	Physical and spectroscopic studies of Sm3+ ions doped Alumino Tungsten Borate glasses for photonic applications. Radiation Physics and Chemistry, 2022, 190, 109806.	1.4	12
94	Photoluminescence downshifting studies of thermally stable Dy3+ ions doped phosphate glasses for photonic device applications. Optical Materials, 2022, 129, 112518.	1.7	12
95	Optical properties of Sr2La8(SiO4)6O2 doped with Ho3+ phosphor. Optik, 2021, 242, 167268.	1.4	11
96	Influence of Tb3+ ions concentration and temperature on lithium bismuth alumino borosilicate glasses for green photonic device applications. Optical Materials, 2021, 120, 111439.	1.7	11
97	Narrow-band ultraviolet B (UVB) emitting CaZr4(PO4)6 doped with Gd3+ phosphor. Optik, 2021, 226, 165932.	1.4	11
98	Enhancement of 1.54â€Î¼m emission in Ce3+-Er3+ codoped Ca4Si2O7F2 phosphor. Journal of Alloys and Compounds, 2019, 775, 810-817.	2.8	10
99	Broadband excited Nd3+ NIR emission in Sr5(PO4)3Cl:Eu2+, Nd3+ phosphor for solar spectral modification. Journal of Luminescence, 2020, 222, 117118.	1.5	10
100	Enhanced visible green and 1.5Âμm radiative emission of Er3+ ions in Li2O-PbO-Al2O3-B2O3 glasses for photonic applications. Journal of Rare Earths, 2021, 39, 520-525.	2.5	10
101	Studies on green emitting characteristics of sol-gel derived Er3+-doped Ca2La8(SiO4)6O2 phosphors. Optik, 2021, 242, 167263.	1.4	9
102	Green-emitting Tb3+ doped LaP3O9 phosphors for plasma display panel. Optik, 2021, 244, 167323.	1.4	9
103	Spectral characteristics of Tb3+ doped ZnF2–K2O–Al2O3–B2O3 glasses for epoxy free tricolor w-LEDs and visible green laser applications. Journal of Luminescence, 2022, 244, 118676.	1.5	9
104	Narrow-Band UVB-Emitting Gd-Doped SrY2O4 Phosphors. Journal of Electronic Materials, 2020, 49, 3025-3030.	1.0	8
105	Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06Âμm optoelectronic devices. Optical Materials, 2021, 111, 110615.	1.7	8
106	Spectroscopic analysis of Dy3+ ions activated borosilicate glasses for photonic device applications. Optical Materials, 2021, 117, 111112.	1.7	8
107	Optical properties of Sm3+ions doped 10SrO-(10â^'x)Al2O3-10BaCl2-60B2O3-10TeO2 glasses for reddish orange laser applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115198.	1.7	8
108	Visible emission characteristics in Tb3+-doped KNa3Al4Si4O16 phosphor. Optik, 2021, 243, 167391.	1.4	8

#	Article	IF	CITATIONS
109	Influence of Sm3+ ion concentration on the photoluminescence behavior of antimony lead oxy fluoro borate glasses. Materials Research Bulletin, 2022, 146, 111597.	2.7	8
110	Downshifting analysis of Sm3+/Eu3+ co-doped LiBiAlBSi glasses for red emission element of white LEDs. Chemical Physics Letters, 2022, 788, 139303.	1.2	8
111	Energy transfer dynamics in thermally stable Sm3+/ Eu3+ co-doped AEAIBS glasses for near UV triggered photonic device applications. Journal of Non-Crystalline Solids, 2022, 580, 121392.	1.5	8
112	Down-shifting photoluminescence studies of thermally stable Dy3+ ions doped borosilicate glasses for optoelectronic device applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 4782-4793.	1.1	8
113	An Electron Paramagnetic Resonance and Photoluminescence Investigation of UVB Radiation Emitting Gadolinium-Activated CaY2Al4SiO12 Garnet Compound. Journal of Electronic Materials, 2019, 48, 4092-4098.	1.0	7
114	Photoluminescence characteristics of Sm3+/Eu3+ co-doped LPZABS glasses for solar cell applications. Solid State Sciences, 2022, 125, 106834.	1.5	7
115	Concentration dependent neodymium doped oxy fluoroborate glasses for 1.08Âμm laser applications. Solid State Sciences, 2021, 113, 106543.	1.5	6
116	On the ultraviolet B emissions of CaLaB7O13:Gd3+ phosphor. Optik, 2020, 217, 164880.	1.4	4
117	Ultraviolet emission from sol-gel derived Ca3MgSi2O8 doped with trivalent gadolinium. Optik, 2021, 226, 165927.	1.4	4
118	Green emission of Er3+-doped Sr2La8(SiO4)6O2 obtained by a sol-gel method. Optik, 2021, 243, 167322.	1.4	4
119	Enhanced red emission in Eu3+ ions doped ZnO-Al2O3-BaF2-CaF2-B2O3 glasses for visible laser applications. Journal of Non-Crystalline Solids, 2022, 577, 121306.	1.5	4
120	Typical comparisons between plasma bubble and blob distributions at different altitudes over the Indian sector using a unique combination of satellite-based observations – a case study. International Journal of Remote Sensing, 2014, 35, 6173-6189.	1.3	3
121	EPR and Optical Properties of Green Emitting Mn Activated Sr2ZnSi2O7 Phosphors Prepared by Sol–Gel Method. Journal of Electronic Materials, 2020, 49, 2265-2272.	1.0	3
122	Color tunable photoluminescence in KZABS: Tm3+ glasses under different sources of excitation for photonic applications. Journal of Non-Crystalline Solids, 2022, 585, 121532.	1.5	3
123	Near-IR luminescence in Nd3+ ions doped Na2O-BaF2-CaF2-B2O3-TeO2 glasses for 1064Ânm laser and fiber amplifier applications. Journal of Non-Crystalline Solids, 2022, 590, 121671.	1.5	3
124	UVB emission from sol-gel derived Gd3+-doped CaLa4Si3O13 phosphor. Optik, 2021, 242, 167275.	1.4	2
125	Visible luminescence in Sm3+ doped CaY2Al4SiO12 garnet obtained by sol-gel method. Optik, 2021, 245, 167394.	1.4	2
126	Spectroscopic Studies of Eu3+ Ion-Doped Antimony-Lead-Oxyfluoroborate Glasses for Visible Red Photonic Device Applications. Journal of Electronic Materials, 2022, 51, 3980-3991.	1.0	2

#	Article	IF	CITATIONS
127	Electron paramagnetic resonance and optical properties of green-emitting Mn(II)-doped hardystonite phosphor prepared by sol-gel method. Optik, 2022, , 169553.	1.4	2
128	Sol-gel derived Ca2La8(SiO4)6O2 doped with Gd3+ as UVB emitting phosphor. Optik, 2021, 241, 167267.	1.4	1