Alexander V Panov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1532420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic Syndrome and β-Oxidation of Long-Chain Fatty Acids in the Brain, Heart, and Kidney Mitochondria. International Journal of Molecular Sciences, 2022, 23, 4047.	1.8	11
2	Energy Metabolism Brain Energy Metabolism. , 2021, , 286-301.		1
3	Mitochondrial Isolevuglandins Contribute to Vascular Oxidative Stress and Mitochondria-Targeted Scavenger of Isolevuglandins Reduces Mitochondrial Dysfunction and Hypertension. Hypertension, 2020, 76, 1980-1991.	1.3	17
4	Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	45
5	Mitochondria: Aging, Metabolic Syndrome and Cardiovascular Diseases. Formation of a New Paradigm. Acta Biomedica Scientifica, 2020, 5, 33-44.	0.1	3
6	The Origin of Mitochondria and their Role in the Evolution of Life and Human Health. Acta Biomedica Scientifica, 2020, 5, 12-25.	0.1	2
7	Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation. Redox Biology, 2019, 26, 101300.	3.9	13
8	Determination of mitochondrial metabolic phenotype through investigation of the intrinsic inhibition of succinate dehydrogenase. Analytical Biochemistry, 2018, 552, 30-37.	1.1	17
9	Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols. Frontiers in Physiology, 2017, 8, 907.	1.3	14
10	Fatty Acids in Energy Metabolism of the Central Nervous System. BioMed Research International, 2014, 2014, 1-22.	0.9	132
11	Structural and Metabolic Determinants of Mitochondrial Superoxide and its Detection Methods. , 2014, , 295-322.		Ο
12	Bioenergetic and Antiapoptotic Properties of Mitochondria from Cultured Human Prostate Cancer Cell Lines PC-3, DU145 and LNCaP. PLoS ONE, 2013, 8, e72078.	1.1	46
13	Respiration and ROS production in brain and spinal cord mitochondria of transgenic rats with mutant G93a Cu/Zn-superoxide dismutase gene. Neurobiology of Disease, 2011, 44, 53-62.	2.1	30
14	Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R844-R854.	0.9	52
15	In Vitro Effects of Cholesterol β-d-Glucoside, Cholesterol and Cycad Phytosterol Glucosides on Respiration and Reactive Oxygen Species Generation in Brain Mitochondria. Journal of Membrane Biology, 2010, 237, 71-77.	1.0	23
16	The Neuromediator Glutamate, through Specific Substrate Interactions, Enhances Mitochondrial ATP Production and Reactive Oxygen Species Generation in Nonsynaptic Brain Mitochondria. Journal of Biological Chemistry, 2009, 284, 14448-14456.	1.6	62
17	Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. American Journal of Physiology - Cell Physiology, 2007, 292, C708-C718.	2.1	119
18	Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. Journal of Neurochemistry, 2007, 100, 070214184024016-???.	2.1	265

Alexander V Panov

#	Article	IF	CITATIONS
19	Ca2+-induced permeability transition in human lymphoblastoid cell mitochondria from normal and Huntington?s disease individuals. Molecular and Cellular Biochemistry, 2005, 269, 143-152.	1.4	88
20	Rotenone Model of Parkinson Disease. Journal of Biological Chemistry, 2005, 280, 42026-42035.	1.6	244
21	Quantitative evaluation of the effects of mitochondrial permeability transition pore modifiers on accumulation of calcium phosphate: comparison of rat liver and brain mitochondria. Archives of Biochemistry and Biophysics, 2004, 424, 44-52.	1.4	56
22	In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Huntington's disease. Archives of Biochemistry and Biophysics, 2003, 410, 1-6.	1.4	94
23	An <i>In Vitro</i> Model of Parkinson's Disease: Linking Mitochondrial Impairment to Altered α-Synuclein Metabolism and Oxidative Damage. Journal of Neuroscience, 2002, 22, 7006-7015.	1.7	547
24	Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature Neuroscience, 2002, 5, 731-736.	7.1	925
25	Response: Parkinson's disease, pesticides and mitochondrial dysfunction. Trends in Neurosciences, 2001, 24, 247.	4.2	18
26	Complex I and Parkinson's Disease. IUBMB Life, 2001, 52, 135-141.	1.5	305
27	Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neuroscience, 2000, 3, 1301-1306.	7.1	3,216
28	Ca2+-Dependent Permeability Transition and Complex I Activity in Lymphoblast Mitochondria from Normal Individuals and Patients with Huntington's or Alzheimer's Disease. Annals of the New York Academy of Sciences, 1999, 893, 365-368.	1.8	22
29	Mg2+Control of Respiration in Isolated Rat Liver Mitochondriaâ€. Biochemistry, 1996, 35, 12849-12856.	1.2	82
30	Independent Modulation of the Activity of α-Ketoglutarate Dehydrogenase Complex by Ca2+and Mg2+Ââ€. Biochemistry, 1996, 35, 427-432.	1.2	62
31	Interstrain differences in organization of metabolic processes in the rat liver—I. The dynamics of changes in the contents of adenine nucleotides, glycogen and fatty acyl-CoAs in the course of short-term starvation in the livers of rats of wistar, august and wag strains. International Journal of Biochemistry & Cell Biology, 1991, 23, 875-879.	0.8	4
32	Adenine nucleotide translocase as a site of regulation by ADP of the rat liver mitochondria permeability to H+ and K+ lons. Archives of Biochemistry and Biophysics, 1980, 199, 420-426.	1.4	65
33	Role of Neuronal Mitochondrial Metabolic Phenotype in Pathogenesis of ALS. , 0, , .		2
34	Metabolic Syndrome as the First Stage of Eldership; the Beginning of Real Aging. , 0, , .		1