
Gopa Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1532305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on tempering behaviour of AISI 410 stainless steel. Materials Characterization, 2015, 100, 81-87.	4.4	64
2	Study on microstructure and wear properties of different nickel base hardfacing alloys deposited on austenitic stainless steel. Surface and Coatings Technology, 2014, 244, 180-188.	4.8	52
3	Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test. Defence Technology, 2016, 12, 490-495.	4.2	18
4	Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy. Journal of Materials Engineering and Performance, 2016, 25, 1663-1672.	2.5	14
5	Effect of Delta Ferrite on Microstructure and Mechanical Properties of High-Chromium Martensitic Steel. Journal of Materials Engineering and Performance, 2019, 28, 876-885.	2.5	13
6	Evaluation of hydrogen-assisted cracking susceptibility in modified 9cr-1mo steel welds. Welding in the World, Le Soudage Dans Le Monde, 2020, 64, 115-122.	2.5	7
7	High-Temperature Tribological Behavior of Nickel-Based Hardfacing Alloys. Tribology Transactions, 2021, 64, 658-666.	2.0	7
8	Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy. Journal of Magnetism and Magnetic Materials, 2015, 385, 112-118.	2.3	6
9	Effect of brazing temperature on the microstructure of martensitic–austenitic steel joints. Materials Science and Technology, 2017, 33, 1372-1378.	1.6	6
10	Study of Magnetism in Colmonoy-6 (AWS NiCr-C) Deposit on 316LN Stainless Steel. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 170, 133-138.	3.5	5
11	Non-Destructive Characterization of Nickel-Base Hardface Deposit on Austenitic Stainless Steel Through Eddy Current and Magnetic Barkhausen Techniques. Welding in the World, Le Soudage Dans Le Monde, 2012, 56, 59-65.	2.5	5
12	Estimation of Hardness in Nickel-Base Hardafacing Deposits on 316LN Stainless Steel by Magnetic Techniques. Welding in the World, Le Soudage Dans Le Monde, 2012, 56, 101-110.	2.5	4
13	Characterisation of hydrogen assisted cracking in modified 9Cr-1Mo steel welds using acoustic emission non destructive technique. Nondestructive Testing and Evaluation, 2021, 36, 692-708.	2.1	3
14	Effect of preheating and post heating in reducing diffusible hydrogen content and hydrogen assisted cracking susceptibility of modified 9Cr–1Mo steel. Science and Technology of Welding and Joining, 2020, 25, 637-643.	3.1	2