
David Maghradze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1532004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissecting the susceptibility/resistance mechanism of <i>Vitis vinifera</i> for the future control of downy mildew. BIO Web of Conferences, 2022, 44, 04002.	0.2	2
2	Culturable Yeast Diversity of Grape Berries from Vitis vinifera ssp. sylvestris (Gmelin) Hegi. Journal of Fungi (Basel, Switzerland), 2022, 8, 410.	3.5	4
3	Tracking the history of grapevine cultivation in Georgia by combining geometric morphometrics and ancient DNA. Vegetation History and Archaeobotany, 2021, 30, 63-76.	2.1	29
4	Georgian Grapevine Cultivars: Ancient Biodiversity for Future Viticulture. Frontiers in Plant Science, 2021, 12, 630122.	3.6	26
5	Comparison between the Grape Technological Characteristics of Vitis vinifera Subsp. sylvestris and Subsp. sativa. Agronomy, 2021, 11, 472.	3.0	3
6	From plant resistance response to the discovery of antimicrobial compounds: The role of volatile organic compounds (VOCs) in grapevine downy mildew infection. Plant Physiology and Biochemistry, 2021, 160, 294-305.	5.8	32
7	Pip shape echoes grapevine domestication history. Scientific Reports, 2021, 11, 21381.	3.3	8
8	Changes in thermal resources and limitations for Georgian viticulture. Australian Journal of Grape and Wine Research, 2020, 26, 29-40.	2.1	9
9	Rpv29, Rpv30 and Rpv31: Three Novel Genomic Loci Associated With Resistance to Plasmopara viticola in Vitis vinifera. Frontiers in Plant Science, 2020, 11, 562432.	3.6	38
10	Novel Aspects on The Interaction Between Grapevine and Plasmopara viticola: Dual-RNA-Seq Analysis Highlights Gene Expression Dynamics in The Pathogen and The Plant During The Battle For Infection. Genes, 2020, 11, 261.	2.4	37
11	Wild grapevine (Vitis sylvestris C.C.Gmel.) wines from the Southern Caucasus region. Oeno One, 2020, 54, 809-822.	1.4	6
12	Influence of climate cycles on grapevine domestication and ancient migrations in Eurasia. Science of the Total Environment, 2018, 635, 1240-1254.	8.0	3
13	Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Scientific Reports, 2018, 8, 12523.	3.3	50
14	Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biology, 2018, 18, 137.	3.6	118
15	Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE, 2018, 13, e0192540.	2.5	164
16	Early Neolithic wine of Georgia in the South Caucasus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10309-E10318.	7.1	192
17	Grapevine phenology and climate change in Georgia. International Journal of Biometeorology, 2017, 61, 761-773.	3.0	21
18	Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens. Frontiers in Microbiology, 2017, 8, 2025.	3.5	74

DAVID MAGHRADZE

#	Article	IF	CITATIONS
19	Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.). PLoS ONE, 2017, 12, e0185974.	2.5	57
20	Indigenous Georgian Wine-Associated Yeasts and Grape Cultivars to Edit the Wine Quality in a Precision Oenology Perspective. Frontiers in Microbiology, 2016, 7, 352.	3.5	40
21	Grape and wine culture in Georgia, the South Caucasus. BIO Web of Conferences, 2016, 7, 03027.	0.2	9
22	Identification and Characterization of New â€~ <i>Candidatus</i> Phytoplasma solani' Strains Associated with Bois Noir Disease in <i>Vitis vinifera</i> L. Cultivars Showing a Range of Symptom Severity in Georgia, the Caucasus Region. Plant Disease, 2016, 100, 904-915.	1.4	42
23	Study of genetic variability in Vitis vinifera L. germplasm by high-throughput Vitis18kSNP array: the case of Georgian genetic resources. BMC Plant Biology, 2015, 15, 154.	3.6	68
24	In vitro antioxidant activity and phenolic composition of Georgian, Central and West European wines. Journal of Food Composition and Analysis, 2015, 41, 113-121.	3.9	21
25	Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey. Biological Research, 2015, 48, 2.	3.4	95
26	A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biology, 2014, 14, 229.	3.6	116
27	First Report of â€~ <i>Candidatus</i> Phytoplasma solani' and â€~ <i>Ca.</i> P. convolvuli' Associated with Grapevine Bois Noir and Bindweed Yellows, Respectively, in Georgia. Plant Disease, 2014, 98, 1151-1151.	1.4	13
28	Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity. Mediators of Inflammation, 2014, 2014, 1-8.	3.0	43
29	Grape Colour Phenotyping: Development of a Method Based on the Reflectance Spectrum. Phytochemical Analysis, 2013, 24, 453-459.	2.4	27
30	From the cradle of grapevine domestication: molecular overview and description of Georgian grapevine (Vitis vinifera L.) germplasm. Tree Genetics and Genomes, 2013, 9, 641-658.	1.6	65
31	Ecological and sanitary characteristics of the Eurasian wild grapevine (<i>Vitis vinifera</i> L. ssp.) Tj ETQq1 1 0.784 Characterisation and Utilisation, 2012, 10, 155-162.	4314 rgBT 0.8	Overlock 20
32	An assessment of genetic variability and relationships among wild-grown blackthorn (Prunus spinosa) Tj ETQqO 0 () rgBT /Ov	verlock 10 Tf

33Tannin phenotyping of the Vitaceae reveals a phylogenetic linkage of epigallocatechin in berries and
leaves. Annals of Botany, 0, , .2.90