Maurice B Hallett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell surface topography controls phagocytosis and cell spreading: The membrane reservoir in neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118832.	1.9	3
2	EPIC3, a novel Ca2+ indicator located at the cell cortex and in microridges, detects high Ca2+ subdomains during Ca2+ influx and phagocytosis. Cell Calcium, 2020, 92, 102291.	1.1	3
3	Ca2+-activated cleavage of ezrin visualised dynamically in living myeloid cells during cell surface area expansion. Journal of Cell Science, 2020, 133, .	1.2	8
4	Optical Methods for the Measurement and Manipulation of Cytosolic Calcium Signals in Neutrophils. Methods in Molecular Biology, 2020, 2087, 191-205.	0.4	1
5	Microinjection and Micropipette-Controlled Phagocytosis Methods for Neutrophils. Methods in Molecular Biology, 2020, 2087, 117-125.	0.4	1
6	Calpain Activation by Ca2+ and Its Role in Phagocytosis. Advances in Experimental Medicine and Biology, 2020, 1246, 129-151.	0.8	7
7	Conclusions and the Futures of Phagocytosis. Advances in Experimental Medicine and Biology, 2020, 1246, 179-182.	0.8	0
8	An Introduction to Phagocytosis. Advances in Experimental Medicine and Biology, 2020, 1246, 1-7.	0.8	8
9	A Brief History of Phagocytosis. Advances in Experimental Medicine and Biology, 2020, 1246, 9-42.	0.8	0
10	Membrane Tension and the Role of Ezrin During Phagocytosis. Advances in Experimental Medicine and Biology, 2020, 1246, 83-102.	0.8	9
11	Single cell measurement of calpain activity in neutrophils reveals link to cytosolic Ca2+ elevation and individual phagocytotic events. Biochemical and Biophysical Research Communications, 2019, 515, 163-168.	1.0	3
12	Neutrophil Cell Shape Change: Mechanism and Signalling during Cell Spreading and Phagocytosis. International Journal of Molecular Sciences, 2019, 20, 1383.	1.8	52
13	Defective rapid cell shape and transendothelial migration by calpain-1 null neutrophils. Biochemical and Biophysical Research Communications, 2018, 506, 1065-1070.	1.0	6
14	Phagocytosis and Motility in Human Neutrophils is Competent but Compromised by Pharmacological Inhibition of Ezrin Phosphorylation. Current Molecular Pharmacology, 2018, 11, 305-315.	0.7	9
15	Topographical interrogation of the living cell surface reveals its role in rapid cell shape changes during phagocytosis and spreading. Scientific Reports, 2017, 7, 9790.	1.6	14
16	Active calpain in phagocytically competent human neutrophils: Electroinjection of fluorogenic calpain substrate. Biochemical and Biophysical Research Communications, 2015, 457, 341-346.	1.0	10
17	The structural basis of differential inhibition of human calpain by indole and phenyl α-mercaptoacrylic acids. Journal of Structural Biology, 2014, 187, 236-241.	1.3	9
18	Minimal impact electro-injection of cells undergoing dynamic shape change reveals calpain activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1182-1187.	1.9	9

#	Article	IF	CITATIONS
19	Microinjection Methods for Neutrophils. Methods in Molecular Biology, 2014, 1124, 181-187.	0.4	2
20	Optical Methods for the Measurement and Manipulation of Cytosolic Calcium Signals in Neutrophils. Methods in Molecular Biology, 2014, 1124, 107-120.	0.4	0
21	Ca2+ and calpain control membrane expansion during rapid cell spreading of neutrophils. Journal of Cell Science, 2013, 126, 4627-35.	1.2	27
22	Transforming Growth Factor-β1 (TGF-β1)-stimulated Fibroblast to Myofibroblast Differentiation Is Mediated by Hyaluronan (HA)-facilitated Epidermal Growth Factor Receptor (EGFR) and CD44 Co-localization in Lipid Rafts. Journal of Biological Chemistry, 2013, 288, 14824-14838.	1.6	220
23	Ca2+ activation of cytosolic calpain induces the transition from apoptosis to necrosis in neutrophils with externalized phosphatidylserine. Journal of Leukocyte Biology, 2013, 93, 95-100.	1.5	15
24	Calpain-1 inhibitors for selective treatment of rheumatoid arthritis: what is the future?. Future Medicinal Chemistry, 2013, 5, 2057-2074.	1.1	10
25	Potent inhibition of Ca ²⁺ -dependent activation of calpain-1 by novel mercaptoacrylates. MedChemComm, 2012, 3, 566-570.	3.5	22
26	A trick of the light: the optical properties of living cytoplasm which can mislead. Integrative Biology (United Kingdom), 2011, 3, 180.	0.6	5
27	Optical complexities of living cytoplasm - implications for live cell imaging and photo-micromanipulation techniques. Journal of Microscopy, 2011, 241, 221-224.	0.8	6
28	Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADPH oxidase activity in neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1446-1452.	1.9	4
29	<i>In vivo</i> functional analysis and genetic modification of <i>in vitro</i> â€derived mouse neutrophils. FASEB Journal, 2011, 25, 1972-1982.	0.2	33
30	Ca2+, calpain and 3-phosphorylated phosphatidyl inositides; decision-making signals in neutrophils as potential targets for therapeutics. Journal of Pharmacy and Pharmacology, 2010, 56, 565-571.	1.2	5
31	Cell surface topology creates high Ca2+ signalling microdomains. Cell Calcium, 2010, 47, 339-349.	1.1	29
32	A Reporter of UV Intensity Delivered to the Cytosol during Photolytic Uncaging. Biophysical Journal, 2010, 98, L25-L27.	0.2	8
33	Low Connexin Channel-Dependent Intercellular Communication in Human Adult Hematopoietic Progenitor/Stem Cells: Probing Mechanisms of Autologous Stem Cell Therapy. Cell Communication and Adhesion, 2010, 16, 138-145.	1.0	6
34	Translocation or just location? Pseudopodia affect fluorescent signals. Journal of Cell Biology, 2009, 184, 197-203.	2.3	26
35	Fantastic Ca2+ "z-waves―fade out quietly. Cell Calcium, 2009, 46, 85-86.	1.1	2
36	Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins. European Journal of Cell Biology, 2009, 88, 79-90.	1.6	28

#	Article	IF	CITATIONS
37	Stopping the traffic: A route to arthritis therapy. European Journal of Immunology, 2008, 38, 2650-2653.	1.6	10
38	Chemotaxis and the cell surface-area problem. Nature Reviews Molecular Cell Biology, 2008, 9, 662-662.	16.1	33
39	IMMATURE CIRCULATING NEUTROPHILS IN SEPSIS HAVE IMPAIRED PHAGOCYTOSIS AND CALCIUM SIGNALING. Shock, 2008, 30, 618-622.	1.0	75
40	Leukocyte membrane "expansionâ€: a central mechanism for leukocyte extravasation. Journal of Leukocyte Biology, 2007, 81, 1160-1164.	1.5	55
41	Lipid-protein cargo transfer: A mode of direct cell-to-cell communication for lipids and their associated proteins. Journal of Cellular Physiology, 2007, 210, 336-342.	2.0	8
42	Localised and rapid Ca2+ micro-events in human neutrophils: Conventional Ca2+ puffs and global waves without peripheral-restriction or wave cycling. Cell Calcium, 2007, 41, 525-536.	1.1	31
43	Ironing out the wrinkles of neutrophil phagocytosis. Trends in Cell Biology, 2007, 17, 209-214.	3.6	81
44	Optical Methods for the Measurement and Manipulation of Cytosolic Free Calcium in Neutrophils. Methods in Molecular Biology, 2007, 412, 125-137.	0.4	6
45	Chemiluminescence as an Analytical Tool in Cell Biology and Medicine. Methods of Biochemical Analysis, 2006, 31, 317-416.	0.2	63
46	Phagocytosis of optically-trapped particles: delivery of the pure phagocytic signal. Cell Research, 2006, 16, 852-854.	5.7	5
47	Localised PtdIns(3,4,5)P3 or PtdIns(3,4)P2 at the phagocytic cup is required for both phagosome closure and Ca2+ signalling in HL60 neutrophils. Journal of Cell Science, 2006, 119, 443-451.	1.2	66
48	Reduced iC3b-mediated phagocytotic capacity of pulmonary neutrophils in cystic fibrosis. Clinical and Experimental Immunology, 2005, 142, 68-75.	1.1	47
49	Colonic healing: A role for polymorphonuclear leucocytes and oxygen radical production. British Journal of Surgery, 2005, 73, 225-228.	0.1	29
50	Hepatocyte growth factor/scatter factor, liver regeneration and cancer metastasis. British Journal of Surgery, 2005, 80, 1368-1373.	0.1	85
51	Inappropriate neutrophil activation in venous disease. British Journal of Surgery, 2005, 81, 695-698.	0.1	34
52	Molecular and cellular basis of cancer invasion and metastasis: Implications for treatment. British Journal of Surgery, 2005, 81, 1576-1590.	0.1	114
53	Inhibition of neutrophil respiratory burst and cytokine priming by Î ³ -linolenic acid. British Journal of Surgery, 2005, 83, 659-664.	0.1	12
54	Adhesion and signaling by B cellâ€derived exosomes: the role of integrins. FASEB Journal, 2004, 18, 977-979.	0.2	280

#	Article	IF	CITATIONS
55	The mitochondrial ADPR link between Ca 2+ store release and Ca 2+ influx channel opening in immune cells. FASEB Journal, 2004, 18, 1335-1338.	0.2	18
56	Ca2+ influx shutdown during neutrophil apoptosis: importance and possible mechanism. Immunology, 2004, 111, 8-12.	2.0	34
57	Signalling shutdown strategies in aging immune cells. Aging Cell, 2004, 3, 145-149.	3.0	11
58	Ca2+ influx shutdown in neutrophils induced by Fas (CD95) cross-linking. Immunology, 2004, 112, 454-460.	2.0	8
59	Intranuclear Ca2+signals within individual nuclear lobes of neutrophils. Cell Biology International, 2003, 27, 395-402.	1.4	1
60	Holding back neutrophil aggression; the oxidase has potential. Clinical and Experimental Immunology, 2003, 132, 181-184.	1.1	21
61	Exclusion of exogenous phosphatidylinositolâ€3,4,5â€ŧrisphosphate from neutrophilâ€polarizing pseudopodia: stabilization of the uropod and cell polarity. EMBO Reports, 2003, 4, 982-988.	2.0	14
62	Phagocytosis by Inflammatory Phagocytes Experimental Strategies for Stimulation and Quantification. , 2003, 225, 35-46.		6
63	Detection and Visualization of Oxidase Activity in Phagocytes. , 2003, 225, 61-68.		8
64	Phagosomal oxidative activity during β2 integrin (CR3)-mediated phagocytosis by neutrophils is triggered by a non-restricted Ca2+signal: Ca2+ controls time not space. Journal of Cell Science, 2003, 116, 2857-2865.	1.2	59
65	Cytosolic Ca ²⁺ Measurement and Imaging in Inflammatory Cells. , 2003, 225, 47-60.		10
66	Cytosolic free Ca2+ changes and calpain activation are required for β integrin–accelerated phagocytosis by human neutrophils. Journal of Cell Biology, 2002, 159, 181-189.	2.3	109
67	GPI-anchored GFP signals Ca2+ but is homogeneously distributed on the cell surface. Biochemical and Biophysical Research Communications, 2002, 293, 714-721.	1.0	24
68	Factor VIIa Induced Release of von Willebrand Factor from Human Umbilical Vein Endothelial Cells by a Tyrosine Kinase Dependent Pathway. Thrombosis and Haemostasis, 2002, 87, 1057-1061.	1.8	6
69	Does neutrophil CD38 have a role in Ca++ signaling triggered by β2 integrin?. Nature Medicine, 2002, 8, 307-307.	15.2	3
70	Factor VIIa induced release of von Willebrand factor from human umbilical vein endothelial cells by a tyrosine kinase dependent pathway. Thrombosis and Haemostasis, 2002, 87, 1057-61.	1.8	2
71	Osmotically induced cytosolic free Ca2+ changes in human neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1538, 20-27.	1.9	5
72	Control of Ca2+ influx in human neutrophils by inositol 1,4,5-trisphosphate (IP3) binding: differential effects of micro-injected IP3 receptor antagonists. Biochemical Journal, 2001, 355, 139.	1.7	17

#	Article	IF	CITATIONS
73	Control of Ca2+ influx in human neutrophils by inositol 1,4,5-trisphosphate (IP3) binding: differential effects of micro-injected IP3 receptor antagonists. Biochemical Journal, 2001, 355, 139-143.	1.7	25
74	Requirement for CD28 co-stimulation is lower in SHP-1-deficient T cells. European Journal of Immunology, 2001, 31, 3649-3658.	1.6	20
75	Expression of GPI-linked Green Fluorescent Protein on the surface of CHO cells. Biochemical Society Transactions, 2000, 28, A396-A396.	1.6	Ο
76	The MEK inhibitor, PD98059, reduces survival but does not block acute myeloid leukemia blast maturation in vitro. European Journal of Haematology, 2000, 64, 211-218.	1.1	15
77	Gentle microinjection for myeloid cells using SLAM. Blood, 2000, 95, 3270-3271.	0.6	15
78	Nonuniform Distribution of Ca2+ Uptake Sites within Human Neutrophils. Biochemical and Biophysical Research Communications, 2000, 279, 337-340.	1.0	8
79	Gentle microinjection for myeloid cells using SLAM. Blood, 2000, 95, 3270-3271.	0.6	4
80	Techniques for measuring and manipulating free Ca2+ in the cytosol and organelles of neutrophils. Journal of Immunological Methods, 1999, 232, 77-88.	0.6	32
81	Ca2+ Signalling Delays in Neutrophils: Effects of Prior Exposure to Platelet Activating Factor or Formyl-met-leu-phe. Cellular Signalling, 1998, 10, 49-53.	1.7	5
82	High Micromolar Ca2+beneath the Plasma Membrane in Stimulated Neutrophils. Biochemical and Biophysical Research Communications, 1998, 248, 679-683.	1.0	42
83	Lipid-Assisted Microinjection: Introducing Material into the Cytosol and Membranes of Small Cells. Biophysical Journal, 1998, 75, 2558-2563.	0.2	54
84	Two distinct Ca2+ storage and release sites in human neutrophils. Journal of Leukocyte Biology, 1998, 63, 225-232.	1.5	26
85	Cellular localisation of the most common mutant form of the CF gene protein, ΔF508–CFTR. Biochemical Society Transactions, 1998, 26, S293-S293.	1.6	3
86	Expression of the HGF/SF Receptor, c-met, and Its Ligand in Human Colorectal Cancers. Cancer Investigation, 1997, 15, 513-521.	0.6	49
87	Pulsatile Ca2+Influx in Human Neutrophils Undergoing CD11b/CD18 Integrin Engagement. Biochemical and Biophysical Research Communications, 1997, 230, 258-261.	1.0	12
88	The Timing and Magnitude of Ca2+Signaling by CD32 Depends on Its Redistribution on the Cell Surface. Experimental Cell Research, 1997, 230, 303-309.	1.2	6
89	Does Actin Polymerization Status Modulate Ca2+Storage in Human Neutrophils? Release and Coalescence of Ca2+Stores by Cytochalasins. Experimental Cell Research, 1997, 234, 379-387.	1.2	11
90	Spatial and Temporal Separation of Calcium Signals in Myeloid Cells Stimulated by Immune Complexes. Cellular Signalling, 1997, 9, 457-462.	1.7	0

#	Article	IF	CITATIONS
91	Regulation of desmosomal cell adhesion in human tumour cells by polyunsaturated fatty acids. Clinical and Experimental Metastasis, 1997, 15, 593-602.	1.7	20
92	Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Trends in Immunology, 1997, 18, 320-324.	7.5	334
93	The use of single image random dot stereograms for presenting 3D microscopic confocal images. Journal of Microscopy, 1997, 186, 275-278.	0.8	1
94	Controlling the molecular motor of neutrophil chemotaxis. BioEssays, 1997, 19, 615-621.	1.2	17
95	DYNAMIC IMAGING OF CYTOSOLIC FREE CA2+IN HUMAN NEUTROPHILS USING CONFOCAL LASER SCANNING MICROSCOPY. Cell Biology International, 1997, 21, 649-654.	1.4	2
96	USE OF FLUORESCENT DYES FOR MEASUREMENT AND LOCALIZATION OF ORGANELLES ASSOCIATED WITH CA2+STORE RELEASE IN HUMAN NEUTROPHILS. Cell Biology International, 1997, 21, 655-663.	1.4	9
97	Stochastic Events Underlie Ca2+Signalling in Neutrophils. Journal of Theoretical Biology, 1997, 186, 1-6.	0.8	13
98	Fluorescent Methods for Measuring and Imaging Cytosolic Free Ca2+in Neutrophils. Methods, 1996, 9, 591-606.	1.9	22
99	Temporal and Spatial Resolution of Ca2+Release and Influx in Human Neutrophils Using a Novel Confocal Laser Scanning Mode. Biochemical and Biophysical Research Communications, 1996, 229, 109-113.	1.0	13
100	Integrin Triggered CA2+ Signalling in Human Neutrophils. Biochemical Society Transactions, 1996, 24, 70S-70S.	1.6	2
101	Tyrosine phosphorylation in inflammatory neutrophils. Biochemical Society Transactions, 1996, 24, 79S-79S.	1.6	2
102	Near Membrane CA2+ Changes in Neutrophils. Biochemical Society Transactions, 1996, 24, 92S-92S.	1.6	2
103	Near membrane Ca2+ changes resulting from store release in neutrophils: detection by FFP-18. Cell Calcium, 1996, 19, 355-362.	1.1	43
104	Inhibition of motility and invasion of human lung cancer cells by invasion inhibiting factor 2. Surgical Oncology, 1996, 5, 77-84.	0.8	8
105	Hepatocyte growth factor induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin and enhances cell-matrix interactions. Oncology Reports, 1996, 3, 819-23.	1.2	6
106	EXOGENOUS CD59 INCORPORATED INTO U937 CELLS THROUGH ITS GLYCOSYL PHOSPHATIDYLINOSITOL ANCHOR BECOMES ASSOCIATED WITH SIGNALLING MOLECULES IN A TIME DEPENDENT MANNER. Biochemical Society Transactions, 1995, 23, 269S-269S.	1.6	5
107	Inhibition of cancer cell motility and invasion by interleukin-12. Clinical and Experimental Metastasis, 1995, 13, 396-404.	1.7	37
108	Inhibition of hepatocyte growth factor-induced motility and in vitro invasion of human colon cancer cells by gamma-linolenic acid. British Journal of Cancer, 1995, 71, 744-752.	2.9	123

#	Article	IF	CITATIONS
109	Neutrophil priming: the cellular signals that say â€~amber' but not â€~green'. Trends in Immunology, 19 16, 264-268.	95, _{7.5}	236
110	Complement component C9-dependent cytosolic free Ca2+ rise and recovery in neutrophils. Cell Calcium, 1995, 17, 279-286.	1.1	7
111	Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent Journal of Cell Biology, 1995, 131, 669-677.	2.3	138
112	Development of oxidase â€~priming' in maturing HL60 cells: Correlation with protein expression and tyrosine phosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1267, 65-71.	1.9	5
113	A Soluble Cellular Factor Directly Stimulates Ca2+ Entry in Neutrophils. Biochemical and Biophysical Research Communications, 1995, 206, 348-354.	1.0	43
114	Induction of Tyrosine Phosphorylation and Translocation of Ezrin by Hepatocyte Growth Factor/Scatter Factor (HGF/SF). Biochemical and Biophysical Research Communications, 1995, 217, 1062-1069.	1.0	55
115	Inhibition of HGF/SF-Induced Membrane Ruffling and Cell Motility by Transient Elevation of Cytosolic Free Ca2+. Experimental Cell Research, 1995, 220, 424-433.	1.2	16
116	The production of large â€~signalling competent' myeloid cells from circulating CD34+ cells in neonatal blood. Journal of Immunological Methods, 1995, 179, 187-192.	0.6	3
117	Altered Ca2+ signalling in human neutrophils from inflammatory sites Annals of the Rheumatic Diseases, 1994, 53, 446-449.	0.5	9
118	Neutrophil "priming―induced by orthovanadate: Evidence of a role for tyrosine phosphorylation. Biochemical Pharmacology, 1994, 48, 15-21.	2.0	26
119	Protein expression and development of oxidase "priming―in maturing HL60 cells. Biochemical Society Transactions, 1994, 22, 326S-326S.	1.6	0
120	Neutrophil activation and priming during engagement of CD11b/CD18 integrins. Biochemical Society Transactions, 1994, 22, 327S-327S.	1.6	3
121	Neutrophil Priming by Cytokines in Patients With Obstructive Jaundice. HPB Surgery, 1994, 7, 281-289.	2.2	24
122	Monocyte-conditioned media possess a novel factor which increases motility of cancer cells. International Journal of Cancer, 1993, 53, 426-431.	2.3	22
123	Cross-linking of CD59 and of other glycosyl phosphatidylinositol-anchored molecules on neutrophils triggers cell activation via tyrosine kinase. European Journal of Immunology, 1993, 23, 2841-2850.	1.6	97
124	Regulation of spreading and growth of colon cancer cells by hepatocyte growth factor. Clinical and Experimental Metastasis, 1993, 11, 235-242.	1.7	72
125	Activation and priming of the human neutrophil oxidase response by substance P: Distinct signal transduction pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1175, 207-213.	1.9	29
126	Dissociation of store release from transmembrane influx of calcium in human neutrophils. FEBS Letters, 1992, 313, 121-125.	1.3	16

#	Article	IF	CITATIONS
127	U937 cells stimulated with opsonised zymozan particles provide a convenient laboratory source of tumour necrosis factor α. Journal of Immunological Methods, 1992, 152, 201-207.	0.6	8
128	Synchronous free Ca2+changes in individual neutrophils stimulated by leukotriene B4. FEBS Letters, 1991, 291, 135-138.	1.3	9
129	The production of an amine-modified derivative of 5-aminosalicylic acid by activated neutrophils Roles for myeloperoxidase and chloride ions. Biochemical Pharmacology, 1991, 42, 1869-1874.	2.0	3
130	Mechanisms of Oxidase Activation in Neutrophils. Blood Cell Biochemistry, 1991, , 289-334.	0.3	4
131	Oxidase activation in individual neutrophils is dependent on the onset and magnitude of the Ca2+ signal. Cell Calcium, 1990, 11, 655-663.	1.1	93
132	Toxic oxygen metabolite production by circulating phagocytic cells in inflammatory bowel disease Gut, 1990, 31, 187-193.	6.1	80
133	"Clamping―actin in polymerized form in electropermeabilized neutrophils inhibits oxidase activation. Biochemical and Biophysical Research Communications, 1990, 169, 1222-1228.	1.0	5
134	Effect of sulphasalazine and its active metabolite, 5-amino-salicylic acid, on toxic oxygen metabolite production by neutrophils Gut, 1989, 30, 1581-1587.	6.1	56
135	Effect of Nicotine and Cotinine on the Production of Oxygen Free Radicals by Neutrophils in Smokers and Non-smokers. Human Toxicology, 1989, 8, 461-463.	0.9	37
136	The reaction of 5-amino-salicylic acid with hypochlorite. Biochemical Pharmacology, 1989, 38, 149-154.	2.0	39
137	The use of fura-2 to determine the relationship between cytoplasmic free Ca2+ and oxidase activation in rat neutrophils. Cell Calcium, 1988, 9, 17-26.	1.1	78
138	Diphenyliodonium-sensitive killing of K562 tumour cells by blood mononuclear cells. Biochemical Society Transactions, 1988, 16, 902-902.	1.6	0
139	Actin polymerization modifies stimulus-oxidase coupling in rat neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 927, 366-371.	1.9	25
140	Diacylglycerol kinase inhibitor, R59022, potentiates neutrophil oxidase activation by Ca2+-dependent stimuli. Biochemical Pharmacology, 1987, 36, 3459-3462.	2.0	16
141	Botulinum C2toxin potentiates activation of the neutrophil oxidase Further evidence of a role for actin polymerization. FEBS Letters, 1987, 219, 40-44.	1.3	34
142	Inhibition of protein kinase C mediated signal transduction by tamoxifen. Biochemical Pharmacology, 1986, 35, 4463-4465.	2.0	132
143	Retinoids interact with the mechanism of neutrophil oxidase activation. Biochemical Society Transactions, 1986, 14, 954-955.	1.6	0
144	A versatile light microscope heating stage for biological temperatures. Journal of Microscopy, 1986, 142, 371-374.	0.8	9

#	Article	IF	CITATIONS
145	The role of oxygen radical production by rat polymorphonuclear leucocytes in â€~reperfusion injury'. Biochemical Society Transactions, 1985, 13, 1195-1196.	1.6	2
146	2-Chloroadenosine inhibits complement-induced reactive oxygen metabolite production and recovery of human polymorphonuclear leucocytes attacked by complement. Biochemical Society Transactions, 1985, 13, 722-723.	1.6	0
147	The role of microfilaments in polymorphonuclear leucocyte oxidase activation. Biochemical Society Transactions, 1985, 13, 1173-1174.	1.6	2
148	Monoclonal antibodies to human polymorphonuclear leucocyte granule antigens. Biochemical Society Transactions, 1985, 13, 1197-1199.	1.6	0
149	Coelenterate photoproteins as indicators of cytoplasmic free Ca2+ in small cells. Cell Calcium, 1985, 6, 69-82.	1.1	11
150	Quantal secretion and response lag demonstrated in single rat neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 847, 15-19.	1.9	11
151	Mechanism of protection against "reperfusion injury―by aprotinin Roles of polymorphonuclear leucocytes and oxygen radicals. Biochemical Pharmacology, 1985, 34, 1757-1761.	2.0	34
152	Is intracellular Ca2+ the trigger for oxygen radical production by polymorphonuclear leucocytes?. Cell Calcium, 1984, 5, 1-19.	1.1	77
153	Recovery of polymorphonuclear leucocytes from complement attack. Biochemical Society Transactions, 1984, 12, 779-780.	1.6	18
154	The roles of endocytosis and exocytosis in oxygen-radical production by polymorphonuclear leucocytes. Biochemical Society Transactions, 1984, 12, 1083-1084.	1.6	1
155	Decrease in apparentKmfor oxygen after stimulation of respiration of rat polymorphonuclear leukocytes. FEBS Letters, 1983, 161, 60-64.	1.3	34
156	Measurement of intracellular calcium ions and oxygen radicals in polymorphonuclear leucocyte-erythrocyte â€~ghost' hybrids Journal of Physiology, 1983, 338, 537-550.	1.3	70
157	Sendai virus causes a rise in intracellular free Ca2+ before cell fusion. Biochemical Journal, 1982, 206, 671-674.	1.7	23
158	Free Ca2+ inside cell ghosts and fused cell hybrids. Biochemical Society Transactions, 1982, 10, 210-210.	1.6	1
159	Measurement of changes in cytoplasmic free Ca2+ in fused cell hybrids. Nature, 1982, 295, 155-158.	13.7	89
160	APPLICATION OF THE PHOTOPROTEIN OBELIN TO THE MEASUREMENT OF FREE Ca2+ IN CELLS., 1981,, 601-60	7.	11
161	Uptake of liposomes containing the photoprotein obelin by rat isolated adipocytes. Adhesion, endocytosis or fusion?. Biochemical Journal, 1980, 192, 587-596.	3.2	24
162	Rapid stimulation of chemiluminescence in rat polymorphonuclear leucocytes caused by anti-cell antibody plus complement. Biochemical Society Transactions, 1980, 8, 723-725.	1.6	5

#	Article	IF	CITATIONS
163	The Rapid Increase in Intracellular Free Calcium Ion Concentration Induced by Complement and its Role in Cell Damage. Biochemical Society Transactions, 1979, 7, 1066-1068.	1.6	13
164	The Importance of Measuring Intracellular Free Ca2+. Biochemical Society Transactions, 1979, 7, 865-869.	1.6	7
165	The role of calcium and strontium ions in the secretion of histamine from mast cells. Agents and Actions, 1978, 8, 400-400.	0.7	2
166	The relationship between histamine secretion and ⁴⁵ calciumâ€uptake by mast cells. Journal of Physiology, 1977, 271, 193-214.	1.3	262
167	Movement of strontium ions into mast cells and its relationship to the secretory response. Journal of Physiology, 1977, 271, 233-251.	1.3	35
168	Strontium Ions as a Probe for the Role of Alkaline-Earth Metal Ions in Histamine Secretion. Biochemical Society Transactions, 1977, 5, 879-883.	1.6	2