Ana C A Veloso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531404/publications.pdf

Version: 2024-02-01

76 papers 1,460 citations

304743 22 h-index 377865 34 g-index

76 all docs 76
docs citations

76 times ranked 1246 citing authors

#	Article	IF	CITATIONS
1	An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors and Actuators B: Chemical, 2009, 136, 209-217.	7.8	162
2	Separation and quantification of the major casein fractions by reverse-phase high-performance liquid chromatography and urea–polyacrylamide gel electrophoresis. Journal of Chromatography A, 2002, 967, 209-218.	3.7	85
3	Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue. Food Chemistry, 2014, 160, 321-329.	8.2	67
4	Sensory intensity assessment of olive oils using an electronic tongue. Talanta, 2016, 146, 585-593.	5.5	52
5	Monitoring of fed-batch E. coli fermentations with software sensors. Bioprocess and Biosystems Engineering, 2009, 32, 381-388.	3.4	47
6	Monitoring olive oils quality and oxidative resistance during storage using an electronic tongue. LWT - Food Science and Technology, 2016, 73, 683-692.	5.2	42
7	Quantification of table olives' acid, bitter and salty tastes using potentiometric electronic tongue fingerprints. LWT - Food Science and Technology, 2017, 79, 394-401.	5.2	41
8	Evaluation of cheese authenticity and proteolysis by HPLC and urea–polyacrylamide gel electrophoresis. Food Chemistry, 2004, 87, 289-295.	8.2	38
9	Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta, 2014, 128, 284-292.	5.5	38
10	Sensory classification of table olives using an electronic tongue: Analysis of aqueous pastes and brines. Talanta, 2017, 162, 98-106.	5 . 5	36
11	A taste sensor device for unmasking admixing of rancid or winey-vinegary olive oil to extra virgin olive oil. Computers and Electronics in Agriculture, 2018, 144, 222-231.	7.7	35
12	UV spectrophotometry method for the monitoring of galacto-oligosaccharides production. Food Chemistry, 2009, 113, 246-252.	8.2	34
13	The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ. Chemosensors, 2019, 7, 29.	3.6	34
14	A novel approach for honey pollen profile assessment using an electronic tongue and chemometric tools. Analytica Chimica Acta, 2015, 900, 36-45.	5.4	33
15	Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment. Talanta, 2019, 197, 363-373.	5.5	30
16	An electronic tongue for gliadins semi-quantitative detection in foodstuffs. Talanta, 2011, 83, 857-864.	5.5	29
17	Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology, 2016, 242, 259-270.	3.3	29
18	Discrimination of Olive Oil by Cultivar, Geographical Origin and Quality Using Potentiometric Electronic Tongue Fingerprints. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1417-1429.	1.9	28

#	Article	IF	Citations
19	Application of a lab-made electronic nose for extra virgin olive oils commercial classification according to the perceived fruitiness intensity. Talanta, 2021, 226, 122122.	5.5	28
20	Dairy products discrimination according to the milk type using an electrochemical multisensor device coupled with chemometric tools. Journal of Food Measurement and Characterization, 2018, 12, 2385-2393.	3.2	27
21	Application of an electronic tongue for Tunisian olive oils' classification according to olive cultivar or physicochemical parameters. European Food Research and Technology, 2017, 243, 1459-1470.	3.3	26
22	Perception of olive oils sensory defects using a potentiometric taste device. Talanta, 2018, 176, 610-618.	5 . 5	24
23	Effect of malaxation temperature on the physicochemical and sensory quality of cv. Cobrançosa olive oil and its evaluation using an electronic tongue. LWT - Food Science and Technology, 2021, 137, 110426.	5.2	24
24	Evaluation of extra-virgin olive oils shelf life using an electronic tongueâ€"chemometric approach. European Food Research and Technology, 2017, 243, 597-607.	3.3	23
25	Olive Oil Total Phenolic Contents and Sensory Sensations Trends during Oven and Microwave Heating Processes and Their Discrimination Using an Electronic Tongue. Journal of Food Quality, 2018, 2018, 1-10.	2.6	21
26	Evaluation of healthy and sensory indexes of sweetened beverages using an electronic tongue. Analytica Chimica Acta, 2014, 848, 32-42.	5.4	20
27	Thin Films Sensor Devices for Mycotoxins Detection in Foods: Applications and Challenges. Chemosensors, 2019, 7, 3.	3.6	19
28	Assessment of Table Olives' Organoleptic Defect Intensities Based on the Potentiometric Fingerprint Recorded by an Electronic Tongue. Food and Bioprocess Technology, 2017, 10, 1310-1323.	4.7	18
29	Honey Evaluation Using Electronic Tongues: An Overview. Chemosensors, 2018, 6, 28.	3.6	17
30	Kinetic-thermodynamic study of the oxidative stability of Arbequina olive oils flavored with lemon verbena essential oil. LWT - Food Science and Technology, 2021, 140, 110711.	5.2	17
31	Impact of incorporating olive leaves during the industrial extraction of cv. Arbequina oils on the physicochemical–sensory quality and health claim fulfillment. European Food Research and Technology, 2022, 248, 171-183.	3.3	17
32	Impact of thermal sterilization on the physicochemical-sensory characteristics of Californian-style black olives and its assessment using an electronic tongue. Food Control, 2020, 117, 107369.	5. 5	16
33	Casein Breakdown in Terrincho Ovine Cheese: Comparison with Bovine Cheese and with Bovine/Ovine Cheeses. Journal of Dairy Science, 2006, 89, 2397-2407.	3.4	14
34	Electrochemical Sensor-Based Devices for Assessing Bioactive Compounds in Olive Oils: A Brief Review. Electronics (Switzerland), 2018, 7, 387.	3.1	14
35	Dietary Sugars Analysis: Quantification of Fructooligossacharides during Fermentation by HPLC-RI Method. Frontiers in Nutrition, 2014, 1, 11.	3.7	13
36	Electronic tongue: a versatile tool for mineral and fruit-flavored waters recognition. Journal of Food Measurement and Characterization, 2016, 10, 264-273.	3.2	13

#	Article	IF	Citations
37	Unmasking Sensory Defects of Olive Oils Flavored with Basil and Oregano Using an Electronic Tongueâ€Chemometric Tool. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 751-760.	1.9	13
38	Sweet peppers discrimination according to agronomic production mode and maturation stage using a chemical-sensory approach and an electronic tongue. Microchemical Journal, 2020, 157, 105034.	4.5	13
39	Impact of the malaxation temperature on the phenolic profile of cv. Cobrançosa olive oils and assessment of the related health claim. Food Chemistry, 2021, 337, 127726.	8.2	13
40	A Potentiometric Electronic Tongue as a Discrimination Tool of Water-Food Indicator/Contamination Bacteria. Chemosensors, 2021, 9, 143.	3.6	13
41	Assessment of physiological conditions in $\langle i \rangle$ E. coli $\langle i \rangle$ fermentations by epifluorescent microscopy and image analysis. Biotechnology Progress, 2009, 25, 882-891.	2.6	10
42	Monitoring the debittering of traditional stoned green table olives during the aqueous washing process using an electronic tongue. LWT - Food Science and Technology, 2019, 109, 327-335.	5.2	10
43	A Kineticâ€Thermodynamic Study of the Effect of the Cultivar/Total Phenols on the Oxidative Stability of Olive Oils. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 625-636.	1.9	10
44	Kinetic study of the microwaveâ€induced thermal degradation of cv. Arbequina olive oils flavored with lemon verbena essential oil. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 1021-1032.	1.9	10
45	Assessing Serra da Estrela PDO cheeses' origin-production date using fatty acids profiles. Journal of Food Measurement and Characterization, 2019, 13, 2988-2997.	3.2	9
46	Assessing acrylamide content in sterilized Californian-style black table olives using HPLC-MS-QQQ and a potentiometric electronic tongue. LWT - Food Science and Technology, 2020, 129, 109605.	5.2	9
47	Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics, 2022, 14, 697.	4.5	9
48	Cyclic voltammetry: A tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process. Talanta, 2013, 117, 438-444.	5.5	8
49	Estimating hydroxytyrosol-tyrosol derivatives amounts in cv. Cobrançosa olive oils based on the electronic tongue analysis of olive paste extracts. LWT - Food Science and Technology, 2021, 147, 111542.	5.2	8
50	The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils. Foods, 2021, 10, 2886.	4.3	8
51	Effect of Extraction Method on the Bioactive Composition, Antimicrobial Activity and Phytotoxicity of Pomegranate By-Products. Foods, 2022, 11, 992.	4.3	8
52	Pomegranate Peels and Seeds as a Source of Phenolic Compounds: Effect of Cultivar, By-Product, and Extraction Solvent. International Journal of Food Science, 2022, 2022, 1-11.	2.0	8
53	Determination of 2,4,6-Trichloroanisole by Cyclic Voltammetry. Procedia Engineering, 2012, 47, 1125-1128.	1.2	7
54	Serra da Estrela cheese's free amino acids profiles by UPLC-DAD-MS/MS and their application for cheese origin assessment. Food Research International, 2019, 126, 108729.	6.2	7

#	Article	IF	Citations
55	Evolutionary Algorithms for Static and Dynamic Optimization of Fed-batch Fermentation Processes., 2005,, 288-291.		6
56	Electrochemical Multi-sensors Device Coupled with Heuristic or Meta-heuristic Selection Algorithms for Single-cultivar Olive Oil Classification. Procedia Engineering, 2014, 87, 192-195.	1.2	6
57	Fatty acids profile of Serra da Estrela PDO cheeses and respective atherogenic and thrombogenic indices. Nutrition and Food Science, 2019, 50, 417-432.	0.9	6
58	An electronic tongue as a classifier tool for assessing perfume olfactory family and storage time-period. Talanta, 2020, 208, 120364.	5 . 5	6
59	Electronic Nose Coupled with Linear and Nonlinear Supervised Learning Methods for Rapid Discriminating Quality Grades of Superior Java Cocoa Beans. International Journal of Intelligent Engineering and Systems, 2019, 12, 167-176.	0.6	6
60	Volatile-Olfactory Profiles of cv. Arbequina Olive Oils Extracted without/with Olive Leaves Addition and Their Discrimination Using an Electronic Nose. Journal of Chemistry, 2021, 2021, 1-10.	1.9	6
61	Impact of fresh olive leaves addition during the extraction of Arbequina virgin olive oils on the phenolic and volatile profiles. Food Chemistry, 2022, 393, 133327.	8.2	6
62	A Size Exclusion HPLC Method for Evaluating the Individual Impacts of Sugars and Organic Acids on Beverage Global Taste by Means of Calculated Dose-Over-Threshold Values. Chromatography (Basel), 2014, 1, 141-158.	1.2	5
63	Olive Oil Quality and Sensory Changes During Houseâ€Use Simulation and Temporal Assessment Using an Electronic Tongue. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1121-1137.	1.9	5
64	Sensory analysis using electronic tongues. , 2021, , 323-343.		5
65	Does water addition during the industrial milling phase affect the chemical-sensory quality of olive oils? The case of cv. Arbequina oils. Food Chemistry, 2022, 395, 133570.	8.2	4
66	CHAPTER 14. UV Spectrophotometry Method for Dietary Sugars. Food and Nutritional Components in Focus, 2012, , 229-248.	0.1	3
67	Valorisation of frozen chestnut by-products: technological challenges for the production of gluten-free flour. Journal of Food Measurement and Characterization, 2019, 13, 864-873.	3.2	3
68	An electronic tongue as a tool for assessing the impact of carotenoids' fortification on cv. Arbequina olive oils. European Food Research and Technology, 2022, 248, 1287-1298.	3.3	3
69	DESIGN OF ON-LINE STATE ESTIMATORS FOR A RECOMBINANT E. COLI FED-BATCH FERMENTATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 67-72.	0.4	2
70	Discrimination of Sweet Cherry Cultivars Based on Electronic Tongue Potentiometric Fingerprints. Applied Sciences (Switzerland), 2020, 10, 7053.	2.5	2
71	Characterization of commercial Tunisian monovarietal olive oils produced from autochthonous olive cultivars. Emirates Journal of Food and Agriculture, 0, , 581.	1.0	1
72	Impact of the Covering Vegetable Oil on the Sensory Profile of Canned Tuna of Katsuwonus pelamis Species and Tuna's Taste Evaluation Using an Electronic Tongue. Chemosensors, 2022, 10, 18.	3.6	1

#	Article	lF	CITATIONS
73	Gliadins in Foods and the Electronic Tongue. , 2016, , 179-188.		O
74	Dataset on free amino acids contents of Serra da Estrela PDO cheeses determined by UPLC-DAD-MS/MS. Data in Brief, 2020, 28, 104908.	1.0	0
75	Evaluation of the Effect of Extracted Time Conditions on the Phenolic Content of Olive Pastes from cv. Arbequina and Discrimination Using a Lab-Made Potentiometric Electronic Tongue. , 2021, 5, .		O
76	Multifunctional Bacterial Cellulose–Chitosan Tape: An Innovative Substitute for PVC. , 2022, 8, .		0