
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose Nanofiber-Based Aerogels from Wheat Straw: Influence of Surface Load and Lignin Content on Their Properties and Dye Removal Capacity. Biomolecules, 2022, 12, 232.	1.8	28
2	Quercus ilex leaf as a functional ingredient: Polyphenolic profile and antioxidant activity throughout simulated gastrointestinal digestion and antimicrobial activity. Journal of Functional Foods, 2022, 91, 105025.	1.6	5
3	Cellulose nanofibers/PVA blend polymeric beads containing in-situ prepared magnetic nanorods as dye pollutants adsorbents. International Journal of Biological Macromolecules, 2022, 209, 1211-1221.	3.6	10
4	Special Issue "Lignocellulosic Biomass― Molecules, 2021, 26, 1483.	1.7	3
5	Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity. Foods, 2021, 10, 966.	1.9	29
6	Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film. Foods, 2021, 10, 1584.	1.9	26
7	Operational Variables on the Processing of Porous Titanium Bodies by Gelation of Slurries with an Expansive Porogen. Materials, 2021, 14, 4744.	1.3	0
8	Effect of enzymatic treatment (endo-glucanases) of fiber and mechanical lignocellulose nanofibers addition on physical and mechanical properties of binderless high-density fiberboards made from wheat straw. Journal of Building Engineering, 2021, 44, 103392.	1.6	4
9	Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging. Foods, 2021, 10, 3043.	1.9	9
10	Development of high-performance binderless fiberboards from wheat straw residue. Construction and Building Materials, 2020, 232, 117247.	3.2	24
11	Coagulation–Flocculation as an Alternative Way to Reduce the Toxicity of the Black Liquor from the Paper Industry: Thermal Valorization of the Solid Biomass Recovered. Waste and Biomass Valorization, 2020, 11, 4731-4742.	1.8	12
12	Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Applied Sciences (Switzerland), 2020, 10, 65.	1.3	108
13	Study on the Macro and Micromechanics Tensile Strength Properties of Orange Tree Pruning Fiber as Sustainable Reinforcement on Bio-Polyethylene Compared to Oil-Derived Polymers and Its Composites. Polymers, 2020, 12, 2206.	2.0	12
14	Industrial application of orange tree nanocellulose as papermaking reinforcement agent. Cellulose, 2020, 27, 10781-10797.	2.4	19
15	Biorefinery Approach for Aerogels. Polymers, 2020, 12, 2779.	2.0	31
16	Horticultural Plant Residues as New Source for Lignocellulose Nanofibers Isolation: Application on the Recycling Paperboard Process. Molecules, 2020, 25, 3275.	1.7	13
17	Feasibility of Barley Straw Fibers as Reinforcement in Fully Biobased Polyethylene Composites: Macro and Micro Mechanics of the Flexural Strength. Molecules, 2020, 25, 2242.	1.7	15
18	Production of Cellulose Nanofibers from Olive Tree Harvest—A Residue with Wide Applications. Agronomy, 2020, 10, 696.	1.3	49

#	Article	IF	CITATIONS
19	Valorization of Hemp Core Residues: Impact of NaOH Treatment on the Flexural Strength of PP Composites and Intrinsic Flexural Strength of Hemp Core Fibers. Biomolecules, 2020, 10, 823.	1.8	10
20	Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content. Cellulose, 2020, 27, 10689-10705.	2.4	33
21	Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. Journal of Cleaner Production, 2019, 239, 118083.	4.6	63
22	Nanocellulose-Based Inks—Effect of Alginate Content on the Water Absorption of 3D Printed Constructs. Bioengineering, 2019, 6, 65.	1.6	37
23	PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. International Journal of Biological Macromolecules, 2019, 141, 197-206.	3.6	89
24	Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing. Materials, 2019, 12, 3006.	1.3	126
25	Alternative Raw Materials for Pulp and Paper Production in the Concept of a Lignocellulosic Biorefinery. , 2019, , .		13
26	Lignin-based hydrogels with "super-swelling―capacities for dye removal. International Journal of Biological Macromolecules, 2018, 115, 1249-1259.	3.6	99
27	Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves. Journal of Cleaner Production, 2018, 172, 233-238.	4.6	17
28	Aqueous acetone fractionation of kraft, organosolv and soda lignins. International Journal of Biological Macromolecules, 2018, 106, 979-987.	3.6	150
29	Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive. International Journal of Biological Macromolecules, 2018, 108, 927-935.	3.6	56
30	Different Solvents for Organosolv Pulping. , 2018, , .		15
31	Synthesis and Characterization of Lignin Hydrogels for Potential Applications as Drug Eluting Antimicrobial Coatings for Medical Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 9037-9046.	3.2	161
32	The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: From residue to value-added products. Industrial Crops and Products, 2017, 99, 27-33.	2.5	48
33	The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose, 2017, 24, 2605-2618.	2.4	39
34	A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. International Journal of Biological Macromolecules, 2017, 103, 990-999.	3.6	76
35	Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: Physicochemical, thermal and rheological characterisation. Carbohydrate Polymers, 2017, 175, 27-37.	5.1	36
36	Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. International Journal of Biological Macromolecules, 2017, 105, 238-251.	3.6	46

#	Article	IF	CITATIONS
37	Isolation and characterization of lignins from wheat straw: Application as binder in lithium batteries. International Journal of Biological Macromolecules, 2017, 104, 909-918.	3.6	59
38	Isolation and Characterization of Gramineae and Fabaceae Soda Lignins. International Journal of Molecular Sciences, 2017, 18, 327.	1.8	48
39	Biorefinery Process Combining Specel® Process and Selective Lignin Precipitation using Mineral Acids. BioResources, 2016, 11, .	0.5	40
40	Biorefinery Scheme for Residual Biomass Using Autohydrolysis and Organosolv Stages for Oligomers and Bioethanol Production. Energy & Fuels, 2016, 30, 8236-8245.	2.5	23
41	Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. International Journal of Biological Macromolecules, 2016, 92, 1025-1033.	3.6	86
42	Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose, 2016, 23, 837-852.	2.4	103
43	Barley Straw (Hordeum vulgare) as a Supplementary Raw Material for Eucalyptus camaldulensis and Pinus sylvestris Kraft Pulp in the Paper Industry. BioResources, 2015, 10, .	0.5	9
44	Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Bioresource Technology, 2015, 191, 263-270.	4.8	46
45	Influence of temperature, time, liquid/solid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches. Bioresource Technology, 2013, 129, 506-511.	4.8	11
46	Influence of the operational variables on the pulping and beating of the orange tree pruning. Industrial Crops and Products, 2013, 49, 785-789.	2.5	8
47	Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresource Technology, 2013, 132, 115-120.	4.8	37
48	Refining of Soda-AQ, Kraft-AQ, and Ethanol Pulps from Orange Tree Wood. BioResources, 2013, 8, .	0.5	3
49	Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: Production of nanofibrillated cellulose and EPFBF nanopaper. Bioresource Technology, 2012, 125, 249-255.	4.8	190
50	Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose, 2012, 19, 2179-2193.	2.4	196
51	IMPROVEMENT OF TCF BLEACHING OF OLIVE TREE PRUNING RESIDUE PULP BY ADDITION OF A LACCASE AND/OR XYLANASE PRE-TREATMENT. BioResources, 2012, 7, .	0.5	10
52	Biobleaching of pulp from oil palm empty fruit bunches with laccase and xylanase. Bioresource Technology, 2012, 110, 371-378.	4.8	42
53	Biorefinery of olive pruning using various processes. Bioresource Technology, 2012, 111, 301-307.	4.8	27
54	TCF bleaching sequence in kraft pulping of olive tree pruning residues. Bioresource Technology, 2012, 117, 117-123.	4.8	19

#	Article	IF	CITATIONS
55	Valorization of residual woody biomass (<i>Olea europaea</i> trimmings) based on aqueous fractionation. Journal of Chemical Technology and Biotechnology, 2012, 87, 87-94.	1.6	19
56	Second-Generation Bioethanol from Residual Woody Biomass. Energy & Fuels, 2011, 25, 4803-4810.	2.5	23
57	Integrated utilization of the main components of Hesperaloe funifera. Biochemical Engineering Journal, 2011, 56, 130-136.	1.8	7
58	Milox fractionation of empty fruit bunches from Elaeis guineensis. Bioresource Technology, 2011, 102, 9755-9762.	4.8	15
59	Production of pulp and energy using orange tree prunings. Bioresource Technology, 2011, 102, 9330-9334.	4.8	26
60	Simulation of Hesperaloe funifera diethanolamine pulping by polynomial and neural fuzzy models. Chemical Engineering Research and Design, 2011, 89, 648-656.	2.7	8
61	Exploitation of hemicellulose, cellulose and lignin from Hesperaloe funifera. Bioresource Technology, 2011, 102, 1308-1315.	4.8	12
62	Feasibility of rice straw as a raw material for the production of soda cellulose pulp. Journal of Cleaner Production, 2010, 18, 1084-1091.	4.6	75
63	Use of Hesperaloe funifera for the production of paper and extraction of lignin for synthesis and fuel gases. Biomass and Bioenergy, 2010, 34, 1471-1480.	2.9	12
64	Soda pulp and fuel gases synthesis from Hesperaloe funifera. Bioresource Technology, 2010, 101, 7032-7040.	4.8	11
65	Integral valorization of tagasaste (Chamaecytisus proliferus) under hydrothermal and pulp processing. Bioresource Technology, 2010, 101, 7635-7640.	4.8	25
66	Valorization of Agricultural Residues by Fractionation of their Components. Open Agriculture Journal, 2010, 4, 125-134.	0.3	10
67	Pulp and paper from vine shoots: Neural fuzzy modeling of ethylene glycol pulping. Bioresource Technology, 2009, 100, 756-762.	4.8	19
68	TCF bleaching of soda-anthraquinone and diethanolamine pulp from oil palm empty fruit bunches. Bioresource Technology, 2009, 100, 1478-1481.	4.8	14
69	Soda-anthraquinone pulping of palm oil empty fruit bunches and beating of the resulting pulp. Bioresource Technology, 2009, 100, 1262-1267.	4.8	54
70	Influence of variables in the hydrothermal treatment of rice straw on the composition of the resulting fractions. Bioresource Technology, 2009, 100, 4863-4866.	4.8	35
71	Pulping of rice straw with high-boiling point organosolv solvents. Biochemical Engineering Journal, 2008, 42, 243-247.	1.8	46
72	Pulping of holm oak wood. Influence of the operating conditions. Bioresource Technology, 2008, 99, 819-823.	4.8	2

#	Article	IF	CITATIONS
73	Neural fuzzy model applied to ethylene-glycol pulping of non-wood raw materials. Bioresource Technology, 2008, 99, 965-974.	4.8	14
74	Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresource Technology, 2008, 99, 1743-1749.	4.8	67
75	Influence of the holm oak soda pulping conditions on the properties of the resulting paper sheets. Bioresource Technology, 2008, 99, 6320-6324.	4.8	3
76	Effect of organosolv and soda pulping processes on the metals content of non-woody pulps. Bioresource Technology, 2008, 99, 6621-6625.	4.8	34
77	Organosolv ethanolamine pulping of olive wood. Biochemical Engineering Journal, 2008, 39, 230-235.	1.8	20
78	Ethyleneglycol pulp from tagasaste. Bioresource Technology, 2008, 99, 2170-2176.	4.8	23
79	Rice straw pulp obtained by using various methods. Bioresource Technology, 2008, 99, 2881-2886.	4.8	151
80	Alternative raw materials and pulping process using clean technologies. Industrial Crops and Products, 2008, 28, 11-16.	2.5	70
81	Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp. Bioresource Technology, 2005, 96, 977-983.	4.8	37
82	Organosolv pulping of olive tree trimmings by use of ethylene glycol/soda/water mixtures. Holzforschung, 2004, 58, 122-128.	0.9	21
83	Use of Ethanolamine–Soda–Water Mixtures for Pulping Olive Wood Trimmings. Chemical Engineering Research and Design, 2004, 82, 1037-1042.	2.7	13
84	Optimization of hydrogen peroxide in totally chlorine free bleaching of cellulose pulp from olive tree residues. Bioresource Technology, 2003, 87, 255-261.	4.8	37
85	Ethanol–acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets. Bioresource Technology, 2002, 83, 139-143.	4.8	43
86	Influence of ethanol pulping of wheat straw on the resulting paper sheets. Process Biochemistry, 2002, 37, 665-672.	1.8	23
87	Influence of process variables in the ethanol pulping of olive tree trimmings. Bioresource Technology, 2001, 78, 63-69.	4.8	36