
## **Chaoyang Xue**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531103/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Mitogen-Activated Protein Kinase Gene (MGV1) in Fusarium graminearum Is Required for Female<br>Fertility, Heterokaryon Formation, and Plant Infection. Molecular Plant-Microbe Interactions, 2002,<br>15, 1119-1127. | 2.6  | 442       |
| 2  | Sensing the environment: lessons from fungi. Nature Reviews Microbiology, 2007, 5, 57-69.                                                                                                                              | 28.6 | 331       |
| 3  | MST12 Regulates Infectious Growth But Not Appressorium Formation in the Rice Blast Fungus<br>Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2002, 15, 183-192.                                              | 2.6  | 194       |
| 4  | The Human Fungal Pathogen Cryptococcus Can Complete Its Sexual Cycle during a Pathogenic Association with Plants. Cell Host and Microbe, 2007, 1, 263-273.                                                             | 11.0 | 175       |
| 5  | Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS<br>Microbiology Reviews, 2008, 32, 1010-1032.                                                                          | 8.6  | 165       |
| 6  | Two Novel Fungal Virulence Genes Specifically Expressed in Appressoria of the Rice Blast Fungus.<br>Plant Cell, 2002, 14, 2107-2119.                                                                                   | 6.6  | 161       |
| 7  | Multiple Upstream Signals Converge on the Adaptor Protein Mst50 in Magnaporthe grisea. Plant Cell,<br>2006, 18, 2822-2835.                                                                                             | 6.6  | 147       |
| 8  | G Protein-coupled Receptor Gpr4 Senses Amino Acids and Activates the cAMP-PKA Pathway inCryptococcus neoformans. Molecular Biology of the Cell, 2006, 17, 667-679.                                                     | 2.1  | 144       |
| 9  | Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex<br>Mating in Cryptococcus neoformans. PLoS Genetics, 2010, 6, e1000953.                                             | 3.5  | 111       |
| 10 | Cryptococcal Titan Cell Formation Is Regulated by G-Protein Signaling in Response to Multiple Stimuli.<br>Eukaryotic Cell, 2011, 10, 1306-1316.                                                                        | 3.4  | 105       |
| 11 | Molecular mechanisms of cryptococcal meningitis. Virulence, 2012, 3, 173-181.                                                                                                                                          | 4.4  | 105       |
| 12 | Two PAK Kinase Genes, CHM1 and MST20, Have Distinct Functions in Magnaporthe grisea. Molecular<br>Plant-Microbe Interactions, 2004, 17, 547-556.                                                                       | 2.6  | 89        |
| 13 | DNA Mutations Mediate Microevolution between Host-Adapted Forms of the Pathogenic Fungus<br>Cryptococcus neoformans. PLoS Pathogens, 2012, 8, e1002936.                                                                | 4.7  | 76        |
| 14 | Mismatch Repair of DNA Replication Errors Contributes to Microevolution in the Pathogenic Fungus<br><i>Cryptococcus neoformans</i> . MBio, 2017, 8, .                                                                  | 4.1  | 76        |
| 15 | Brain Inositol Is a Novel Stimulator for Promoting Cryptococcus Penetration of the Blood-Brain<br>Barrier. PLoS Pathogens, 2013, 9, e1003247.                                                                          | 4.7  | 69        |
| 16 | G protein signaling governing cell fate decisions involves opposing Gα subunits inCryptococcus neoformans. Molecular Biology of the Cell, 2007, 18, 3237-3249.                                                         | 2.1  | 64        |
| 17 | A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO<br>Journal, 2009, 28, 1220-1233.                                                                                         | 7.8  | 63        |
| 18 | Role of an Expanded Inositol Transporter Repertoire in Cryptococcus neoformans Sexual<br>Reproduction and Virulence. MBio, 2010, 1, .                                                                                  | 4.1  | 61        |

CHAOYANG XUE

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The F-Box Protein Fbp1 Regulates Sexual Reproduction and Virulence in Cryptococcus neoformans.<br>Eukaryotic Cell, 2011, 10, 791-802.                                                                                        | 3.4 | 61        |
| 20 | Lipid Flippase Subunit Cdc50 Mediates Drug Resistance and Virulence in Cryptococcus neoformans.<br>MBio, 2016, 7, .                                                                                                          | 4.1 | 60        |
| 21 | The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi. Mycobiology, 2011, 39, 243-248.                                                                                                                      | 1.7 | 56        |
| 22 | Fbp1-Mediated Ubiquitin-Proteasome Pathway Controls Cryptococcus neoformans Virulence by<br>Regulating Fungal Intracellular Growth in Macrophages. Infection and Immunity, 2014, 82, 557-568.                                | 2.2 | 56        |
| 23 | The RGS protein Crg2 regulates both pheromone and cAMP signalling in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2008, 70, 379-395.                                                                             | 2.5 | 53        |
| 24 | Bypassing Both Surface Attachment and Surface Recognition Requirements for Appressorium<br>Formation by Overactive Ras Signaling in <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe<br>Interactions, 2014, 27, 996-1004. | 2.6 | 41        |
| 25 | Nutrient and Stress Sensing in Pathogenic Yeasts. Frontiers in Microbiology, 2019, 10, 442.                                                                                                                                  | 3.5 | 41        |
| 26 | Identification of Pathogen Genomic Differences That Impact Human Immune Response and Disease<br>during Cryptococcus neoformans Infection. MBio, 2019, 10, .                                                                  | 4.1 | 39        |
| 27 | A Heat-Killed <i>Cryptococcus</i> Mutant Strain Induces Host Protection against Multiple Invasive<br>Mycoses in a Murine Vaccine Model. MBio, 2019, 10, .                                                                    | 4.1 | 36        |
| 28 | A Pmk1-Interacting Gene Is Involved in Appressorium Differentiation and Plant Infection in<br><i>Magnaporthe oryzae</i> . Eukaryotic Cell, 2011, 10, 1062-1070.                                                              | 3.4 | 31        |
| 29 | Two Major Inositol Transporters and Their Role in Cryptococcal Virulence. Eukaryotic Cell, 2011, 10, 618-628.                                                                                                                | 3.4 | 31        |
| 30 | Cryptococcus and Beyond—Inositol Utilization and Its Implications for the Emergence of Fungal<br>Virulence. PLoS Pathogens, 2012, 8, e1002869.                                                                               | 4.7 | 29        |
| 31 | The F-Box Protein Fbp1 Shapes the Immunogenic Potential of Cryptococcus neoformans. MBio, 2018, 9, .                                                                                                                         | 4.1 | 28        |
| 32 | A Mechanosensitive Channel Governs Lipid Flippase-Mediated Echinocandin Resistance in Cryptococcus<br>neoformans. MBio, 2019, 10, .                                                                                          | 4.1 | 28        |
| 33 | Activation of Meiotic Genes Mediates Ploidy Reduction during Cryptococcal Infection. Current<br>Biology, 2020, 30, 1387-1396.e5.                                                                                             | 3.9 | 27        |
| 34 | Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiology Spectrum, 2017, 5, .                                                                                                                                   | 3.0 | 24        |
| 35 | Cryptococcus inositol utilization modulates the host protective immune response during brain infection. Cell Communication and Signaling, 2014, 12, 51.                                                                      | 6.5 | 23        |
| 36 | The Casein Kinase I Protein Cck1 Regulates Multiple Signaling Pathways and Is Essential for Cell<br>Integrity and Fungal Virulence in Cryptococcus neoformans. Eukaryotic Cell, 2011, 10, 1455-1464.                         | 3.4 | 19        |

CHAOYANG XUE

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Glucose Sensor-Like Protein Hxs1 Is a High-Affinity Glucose Transporter and Required for Virulence in Cryptococcus neoformans. PLoS ONE, 2013, 8, e64239.                                                           | 2.5 | 18        |
| 38 | More Than Just Cleaning: Ubiquitin-Mediated Proteolysis in Fungal Pathogenesis. Frontiers in Cellular<br>and Infection Microbiology, 2021, 11, 774613.                                                                  | 3.9 | 15        |
| 39 | Phosphatidylserine synthesis is essential for viability of the human fungal pathogen Cryptococcus neoformans. Journal of Biological Chemistry, 2019, 294, 2329-2339.                                                    | 3.4 | 14        |
| 40 | Time for a blast: genomics of Magnaporthe grisea. Molecular Plant Pathology, 2002, 3, 173-176.                                                                                                                          | 4.2 | 11        |
| 41 | Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans. Scientific Reports, 2015, 5, 8688.                                                               | 3.3 | 11        |
| 42 | A spontaneous mutation in DNA polymerase POL3 during in vitro passaging causes a hypermutator phenotype in Cryptococcus species. DNA Repair, 2020, 86, 102751.                                                          | 2.8 | 10        |
| 43 | Inositol Metabolism Regulates Capsule Structure and Virulence in the Human Pathogen Cryptococcus neoformans. MBio, 2021, 12, e0279021.                                                                                  | 4.1 | 10        |
| 44 | Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Frontiers in Cellular and Infection Microbiology, 2022, 12, 859049.                                                                       | 3.9 | 10        |
| 45 | Cryptococcus flips its lid - membrane phospholipid asymmetry modulates antifungal drug resistance<br>and virulence. Microbial Cell, 2016, 3, 358-360.                                                                   | 3.2 | 7         |
| 46 | More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans. Microbial Cell, 2020, 7, 115-118.                                                | 3.2 | 6         |
| 47 | Finding the Sweet Spot: How Human Fungal Pathogens Acquire and Turn the Sugar Inositol against<br>Their Hosts. MBio, 2015, 6, e00109.                                                                                   | 4.1 | 5         |
| 48 | Role of the inositol pyrophosphate multikinase Kcs1 in Cryptococcus inositol metabolism. Fungal<br>Genetics and Biology, 2018, 113, 42-51.                                                                              | 2.1 | 5         |
| 49 | Development of Antifungal Peptides against Cryptococcus neoformans; Leveraging Knowledge about<br>the <i>cdc50Δ </i> Mutant Susceptibility for Lead Compound Development. Microbiology Spectrum, 2022,<br>10, e0043922. | 3.0 | 5         |
| 50 | Characterization and Complete Nucleotide Sequence of Two Isolates of <i>Tomato mosaic virus</i> .<br>Journal of Phytopathology, 2012, 160, 115-119.                                                                     | 1.0 | 4         |
| 51 | Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.                                                                                                                                             |     | 4         |
| 52 | Assessment of Constitutive Activity of a G Protein-Coupled Receptor, Cpr2, in Cryptococcus<br>neoformans by Heterologous and Homologous Methods. Methods in Enzymology, 2010, 484, 397-412.                             | 1.0 | 2         |
| 53 | How Fungi Sense Sugars, Alcohols, and Amino Acids. , 2014, , 467-479.                                                                                                                                                   |     | Ο         |