Baoliang Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1531064/baoliang-chen-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166
papers12,452
citations55
h-index110
g-index171
ext. papers14,665
ext. citations9.6
avg, IF7.35
L-index

#	Paper	IF	Citations
166	Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review <i>Environmental Science & Environmental Envir</i>	10.3	4
165	Enhanced photocatalytic hydrogen peroxide production at a solid-liquid-air interface via microenvironment engineering. <i>Applied Catalysis B: Environmental</i> , 2022 , 305, 121066	21.8	О
164	Synergistic oxytetracycline adsorption and peroxydisulfate-driven oxidation on nitrogen and sulfur co-doped porous carbon spheres. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127444	12.8	3
163	Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy. <i>Journal of Colloid and Interface Science</i> , 2022 , 608, 255-264	9.3	2
162	Self-assembled fungus-biochar composite pellets (FBPs) for enhanced co-sorption-biodegradation towards phenanthrene. <i>Chemosphere</i> , 2022 , 286, 131887	8.4	2
161	Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. <i>Science of the Total Environment</i> , 2022 , 805, 150336	10.2	4
160	Overall photosynthesis of HO by an inorganic semiconductor <i>Nature Communications</i> , 2022 , 13, 1034	17.4	11
159	Biochar-based asymmetric membrane for selective removal and oxidation of hydrophobic organic pollutants <i>Chemosphere</i> , 2022 , 134509	8.4	
158	Facile nitrogen doping in fungal hyphae-derived biochars via cooperation of microbial culture and pyrolysis for efficient catalytic reduction of 4-nitrophenol <i>Chemosphere</i> , 2022 , 134526	8.4	О
157	Occurrence and transformation of unknown organochlorines in the wastewater treatment plant using specific Fragment-Based method with LC Q-TOF MS <i>Water Research</i> , 2022 , 216, 118372	12.5	1
156	Graphene nanofiltration membrane intercalated with AgNP@g-C3N4 for efficient water purification and photocatalytic self-cleaning performance. <i>Chemical Engineering Journal</i> , 2022 , 441, 136	o ¹ 8 ¹⁹⁷	О
155	Multilayered graphene oxide membrane with precisely controlled interlayer spacing for separation of molecules with very close molecular weights. <i>Journal of Membrane Science</i> , 2022 , 657, 120678	9.6	О
154	High-Flux pH-Responsive Ultrafiltration Membrane for Efficient Nanoparticle Fractionation. <i>ACS Applied Materials & Applied & </i>	9.5	1
153	In situ scrutinize the adsorption of sulfamethoxazole in water using AFM force spectroscopy: Molecular adhesion force determination and fractionation <i>Journal of Hazardous Materials</i> , 2021 , 426, 128128	12.8	О
152	Constructing the Support as a Microreactor and Regenerator for Highly Active and In Situ Regenerative Hydrogenation Catalyst. <i>Advanced Functional Materials</i> , 2021 , 31, 2100971	15.6	2
151	Heterogeneous Hydrogenation Catalysts: Constructing the Support as a Microreactor and Regenerator for Highly Active and In Situ Regenerative Hydrogenation Catalyst (Adv. Funct. Mater. 22/2021). Advanced Functional Materials, 2021, 31, 2170159	15.6	1
150	Selectively coupled small Pd nanoparticles on sp-hybridized domain of graphene-based aerogel with enhanced catalytic activity and stability. <i>Science of the Total Environment</i> , 2021 , 771, 145396	10.2	4

(2020-2021)

149	Facile synthesis of porous CoFe2O4/graphene aerogel for catalyzing efficient removal of organic pollutants. <i>Science of the Total Environment</i> , 2021 , 775, 143398	10.2	10	
148	Uniformly Dispersed Metal Sulfide Nanodots on g-C3N4 as Bifunctional Catalysts for High-Efficiency Photocatalytic H2 and H2O2 Production under Visible-Light Irradiation. <i>Energy & Mamp; Fuels</i> , 2021 , 35, 10746-10755	4.1	6	
147	Janus Membrane with Bioinspired Heterogeneous Morphology for Efficient Fog Harvesting. <i>ACS ES&T Engineering</i> , 2021 , 1, 1217-1226		1	
146	In situ quantitative determination of the intermolecular attraction between amines and a graphene surface using atomic force microscopy. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 385-395	9.3	9	
145	Concurrent enhancement of structure stability and adsorption capacity of freeze-dried graphene oxide aerogels via the removal of oxidation debris nanoparticles on nanosheets. <i>Environmental Science: Nano</i> , 2021 , 8, 1000-1009	7.1	3	
144	Konjac glucomannan biopolymer as a multifunctional binder to build a solid permeable interface on Na3V2(PO4)3/C cathodes for high-performance sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9864-9874	13	6	
143	Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production Using Cyano-Rich Graphitic Carbon Nitride. <i>Advanced Functional Materials</i> , 2021 , 31, 2105731	15.6	19	
142	High Sample Throughput LED Reactor for Facile Characterization of the Quantum Yield Spectrum of Photochemically Produced Reactive Intermediates. <i>Environmental Science & Environmental Science & Envi</i>	10.3	4	
141	Bimetal organic framework/graphene oxide derived magnetic porous composite catalyst for peroxymonosulfate activation in fast organic pollutant degradation. <i>Journal of Hazardous Materials</i> , 2021 , 419, 126427	12.8	7	
140	Multiple roles of humic acid in the photogeneration of reactive bromine species using a chemical probe method. <i>Environmental Pollution</i> , 2021 , 286, 117658	9.3	1	
139	Reduced graphene oxide/TiO(B) immobilized on nylon membrane with enhanced photocatalytic performance. <i>Science of the Total Environment</i> , 2021 , 799, 149370	10.2	2	
138	Contribution of enrofloxacin and Cu to the antibiotic resistance of bacterial community in a river biofilm. <i>Environmental Pollution</i> , 2021 , 291, 118156	9.3	1	
137	Enhanced Microbial Ferrihydrite Reduction by Pyrogenic Carbon: Impact of Graphitic Structures <i>Environmental Science & Environmental Science & Envir</i>	10.3	1	
136	Cobalt (II)-based open-framework systems constructed on g-C3N4 for extraordinary enhancing photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119207	21.8	20	
135	Novel photocatalytic performance of nanocage-like MIL-125-NH2 induced by adsorption of phenolic pollutants. <i>Environmental Science: Nano</i> , 2020 , 7, 1525-1538	7.1	14	
134	Magnetic biochar supported \(\frac{1}{2}\)MnO nanorod for adsorption enhanced degradation of 4-chlorophenol via activation of peroxydisulfate. Science of the Total Environment, 2020 , 724, 138278	10.2	27	
133	Nanoscale Profiling of 2D Surface Hydrophobicity Recognition of Environmental Media via AFM Measurements In Situ. <i>Environmental Science & Environmental & Env</i>	10.3	4	
132	Ultrathin graphene oxide membrane with constructed tent-shaped structures for efficient and tunable molecular sieving. <i>Environmental Science: Nano</i> , 2020 , 7, 2373-2384	7.1	3	

131	Dual-function ultrafiltration membrane constructed from pure activated carbon particles via facile nanostructure reconstruction for high-efficient water purification. <i>Carbon</i> , 2020 , 168, 254-263	10.4	4
130	Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices. <i>Biochar</i> , 2020 , 2, 1-31	10	60
129	Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants. <i>Environmental Pollution</i> , 2020 , 265, 114772	9.3	16
128	Effects of biochar nanoparticles on seed germination and seedling growth. <i>Environmental Pollution</i> , 2020 , 256, 113409	9.3	24
127	Immobilizing 1-3 nm Ag nanoparticles in reduced graphene oxide aerogel as a high-effective catalyst for reduction of nitroaromatic compounds. <i>Environmental Pollution</i> , 2020 , 256, 113405	9.3	10
126	Biochar-amendment-reduced cotransport of graphene oxide nanoparticles and dimethyl phthalate in saturated porous media. <i>Science of the Total Environment</i> , 2020 , 705, 135094	10.2	8
125	Low-pressure driven electrospun membrane with tuned surface charge for efficient removal of polystyrene nanoplastics from water. <i>Journal of Membrane Science</i> , 2020 , 614, 118470	9.6	27
124	Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde Oxidation. <i>Nano Letters</i> , 2020 , 20, 8719-8724	11.5	4
123	Proton uptake behaviors of organic and inorganic matters in biochars prepared under different pyrolytic temperatures. <i>Science of the Total Environment</i> , 2020 , 746, 140853	10.2	1
122	Scalable graphene oxide membranes with tunable water channels and stability for ion rejection. <i>Environmental Science: Nano</i> , 2019 , 6, 904-915	7.1	30
121	In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117848	21.8	74
120	A nonradical reaction-dominated phenol degradation with peroxydisulfate catalyzed by nitrogen-doped graphene. <i>Science of the Total Environment</i> , 2019 , 667, 287-296	10.2	31
119	pH-dependent sorption of sulfonamide antibiotics onto biochars: Sorption mechanisms and modeling. <i>Environmental Pollution</i> , 2019 , 248, 48-56	9.3	42
118	Reconsideration of heterostructures of biochars: Morphology, particle size, elemental composition, reactivity and toxicity. <i>Environmental Pollution</i> , 2019 , 254, 113017	9.3	19
117	Stable Graphene-Based Membrane with pH-Responsive Gates for Advanced Molecular Separation. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	15
116	Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. <i>Environmental Pollution</i> , 2019 , 253, 779-789	9.3	47
115	Effect of fulvic acid coating on biochar surface structure and sorption properties towards 4-chlorophenol. <i>Science of the Total Environment</i> , 2019 , 691, 595-604	10.2	12
114	Membrane hydrophilicity switching via molecular design and re-construction of the functional additive for enhanced fouling resistance. <i>Journal of Membrane Science</i> , 2019 , 588, 117222	9.6	12

113	Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil. <i>Environment International</i> , 2019 , 133, 105211	12.9	22
112	Environmental Effects of Silicon within Biochar (Sichar) and Carbon-Silicon Coupling Mechanisms: A Critical Review. <i>Environmental Science & Environmental Environmental Environmental Science & Environmental Envir</i>	10.3	39
111	Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem. <i>Environmental Pollution</i> , 2019 , 248, 823-833	9.3	21
110	Underwater superoleophobic PVA G O nanofibrous membranes for emulsified oily water purification. <i>Environmental Science: Nano</i> , 2019 , 6, 3723-3733	7.1	10
109	Facile fabrication of Shewanella@graphene core-shell material and its enhanced performance in nitrobenzene reduction. <i>Science of the Total Environment</i> , 2019 , 658, 324-332	10.2	6
108	Durable Superhydrophobic/Superoleophilic Graphene-Based Foam for High-Efficiency Oil Spill Cleanups and Recovery. <i>Environmental Science & Environmental Science & Environment</i>	10.3	53
107	Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. <i>Journal of Soils and Sediments</i> , 2019 , 19, 171-185	3.4	40
106	Porous PVdF/GO Nanofibrous Membranes for Selective Separation and Recycling of Charged Organic Dyes from Water. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	95
105	Nanocomposite Membrane with Polyethylenimine-Grafted Graphene Oxide as a Novel Additive to Enhance Pollutant Filtration Performance. <i>Environmental Science & Enhance & Enhance & Environmental Science & Enhance & Environmental Science & Environmental & En</i>	o ^{10.3}	63
104	Application of graphene-based materials in water purification: from the nanoscale to specific devices. <i>Environmental Science: Nano</i> , 2018 , 5, 1264-1297	7.1	73
103	Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. <i>Environmental Science & Environmental & Enviro</i>	10.3	349
102	Reduced bioavailability and plant uptake of polycyclic aromatic hydrocarbons from soil slurry amended with biochars pyrolyzed under various temperatures. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 16991-17001	5.1	16
101	Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid. <i>Environmental Pollution</i> , 2018 , 232, 505-513	9.3	52
100	Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms. <i>Environmental Pollution</i> , 2018 , 233, 1013-1023	9.3	15
99	Covalently cross-linked graphene oxide aerogel with stable structure for high-efficiency water purification. <i>Chemical Engineering Journal</i> , 2018 , 354, 896-904	14.7	50
98	Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 149, 182-189	7	10
97	Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. <i>Chemical Engineering Journal</i> , 2018 , 334, 1119-	1127	82
96	Facile fabrication of crumpled graphene oxide nanosheets and its Platinum nanohybrids for high efficient catalytic activity. <i>Environmental Pollution</i> , 2018 , 243, 1810-1817	9.3	10

95	Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: Combined with batch sorption and fixed-bed column studies. <i>Environmental Pollution</i> , 2018 , 243, 1539-1549	9.3	40
94	Self-Assembled Nano-FeO(OH)/Reduced Graphene Oxide Aerogel as a Reusable Catalyst for Photo-Fenton Degradation of Phenolic Organics. <i>Environmental Science & Environmental Sc</i>	10.3	66
93	Biochar Impacts on Soil Silicon Dissolution Kinetics and their Interaction Mechanisms. <i>Scientific Reports</i> , 2018 , 8, 8040	4.9	24
92	Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via IPAHB: Sorption experiments and DFT calculations. <i>Environmental Pollution</i> , 2018 , 240, 342-352	9.3	23
91	Aggregation Kinetics and Self-Assembly Mechanisms of Graphene Quantum Dots in Aqueous Solutions: Cooperative Effects of pH and Electrolytes. <i>Environmental Science & Environmental Science & Environm</i>	10.3	71
90	A New Insight of Graphene oxide-Fe(III) Complex Photochemical Behaviors under Visible Light Irradiation. <i>Scientific Reports</i> , 2017 , 7, 40711	4.9	22
89	Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. <i>Chemical Engineering Journal</i> , 2017 , 319, 9-20	14.7	123
88	Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes. <i>Scientific Reports</i> , 2017 , 7, 46235	4.9	26
87	A Direct Observation of the Fine Aromatic Clusters and Molecular Structures of Biochars. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	109
86	Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. <i>Environmental Pollution</i> , 2017 , 227, 98-115	9.3	381
85	Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 6342-6351	10.3	165
84	Membranes prepared from graphene-based nanomaterials for sustainable applications: a review. <i>Environmental Science: Nano</i> , 2017 , 4, 2267-2285	7.1	36
83	Sugar Cane-Converted Graphene-like Material for the Superhigh Adsorption of Organic Pollutants from Water via Coassembly Mechanisms. <i>Environmental Science & Environmental Sc</i>	5 ^{10.3}	40
82	Effect of culturing temperatures on cadmium phytotoxicity alleviation by biochar. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 23843-23849	5.1	7
81	Facile fabrication of freestanding all-carbon activated carbon membranes for high-performance and universal pollutant management. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 20316-20326	13	11
80	Synergistic effects of 2D graphene oxide nanosheets and 1D carbon nanotubes in the constructed 3D carbon aerogel for high performance pollutant removal. <i>Chemical Engineering Journal</i> , 2017 , 314, 336-346	14.7	73
79	Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets. <i>Environmental Science & Environmental Science</i>	10.3	44
78	H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. <i>Scientific Reports</i> , 2016 , 6, 22644	4.9	106

77	Size effects of graphene oxide nanosheets on the construction of three-dimensional graphene-based macrostructures as adsorbents. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12106-12118	3 13	55
76	Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model. <i>Scientific Reports</i> , 2016 , 6, 23554	4.9	10
<i>75</i>	Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars. <i>Scientific Reports</i> , 2016 , 6, 29346	4.9	34
74	Wrinkles and Folds of Activated Graphene Nanosheets as Fast and Efficient Adsorptive Sites for Hydrophobic Organic Contaminants. <i>Environmental Science & Environmental Scienc</i>	10.3	129
73	Aggregation, Adsorption, and Morphological Transformation of Graphene Oxide in Aqueous Solutions Containing Different Metal Cations. <i>Environmental Science & Environmental Sc</i>	5- 1 9 0 7	5 ¹⁹⁴
7 ²	Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. <i>Chemical Engineering Journal</i> , 2015 , 281, 379-388	14.7	241
71	Resolution of Adsorption and Partition Components of Organic Compounds on Black Carbons. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	37
70	Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. <i>Scientific Reports</i> , 2015 , 5, 11641	4.9	61
69	Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. <i>Environmental Science & Technology</i> , 2015 , 49, 6181-9	10.3	255
68	Combined (1)H NMR and LSER study for the compound-specific interactions between organic contaminants and organobentonites. <i>Journal of Colloid and Interface Science</i> , 2015 , 460, 119-27	9.3	4
67	Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review. <i>Chemical Engineering Journal</i> , 2015 , 264, 753-771	14.7	199
66	Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. <i>Environmental Science & Environmental </i>	10.3	416
65	Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution. <i>Journal of Soils and Sediments</i> , 2015 , 15, 60-70	3.4	70
64	Interaction Mechanisms between Biochar and Organic Pollutants. SSSA Special Publication Series, 2015 , 225-257	O	2
63	Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water. <i>Environmental Science & Environmental Environment</i>	10.3	205
62	Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes. <i>Journal of Soils and Sediments</i> , 2015 , 15, 1130-1138	3.4	69
61	Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 309-17	10.3	205
60	The effect of structural compositions on the biosorption of phenanthrene and pyrene by tea leaf residue fractions as model biosorbents. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 3318-30	0 ^{5.1}	8

59	Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents. <i>Journal of Environmental Sciences</i> , 2014 , 26, 737-48	6.4	64
58	Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 373-80	5.7	191
57	Facile fabrication of stable monolayer and few-layer graphene nanosheets as superior sorbents for persistent aromatic pollutant management in water. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18219-18	3224	52
56	Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8941-8951	13	141
55	Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. <i>Environmental Science & Environmental Science & </i>	10.3	125
54	Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 279-88	10.3	248
53	Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	276
52	Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy. <i>Environmental Science & Environmental Science</i>	10.3	48
51	Metal composition of layered double hydroxides (LDHs) regulating ClO(-)4 adsorption to calcined LDHs via the memory effect and hydrogen bonding. <i>Journal of Environmental Sciences</i> , 2014 , 26, 493-50	16.4	34
50	Perchlorate uptake and molecular mechanisms by magnesium/aluminum carbonate layered double hydroxides and the calcined layered double hydroxides. <i>Chemical Engineering Journal</i> , 2014 , 237, 38-46	14.7	47
49	Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. <i>Environmental Science & Environmental Science & Environment</i>	10.3	539
48	Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. <i>Science Bulletin</i> , 2013 , 58, 613-621		32
47	Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. <i>Environmental Science & Environmental Science & Envir</i>	10.3	72
46	Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. <i>Bioresource Technology</i> , 2013 , 146, 485-493	11	306
45	Triplex blue-shifting hydrogen bonds of ClO4(-)IIIH-C in the nanointerlayer of montmorillonite complexed with cetyltrimethylammonium cation from hydrophilic to hydrophobic properties. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	10
44	Effective alleviation of aluminum phytotoxicity by manure-derived biochar. <i>Environmental Science</i> & amp; Technology, 2013 , 47, 2737-45	10.3	110
43	Environmental transport behaviors of perchlorate as an emerging pollutant and their effects on food safety and health risk. <i>Chinese Science Bulletin</i> , 2013 , 58, 2626-2642	2.9	2
42	Enhanced dissipation of polycyclic aromatic hydrocarbons in the presence of fresh plant residues and their extracts. <i>Environmental Pollution</i> , 2012 , 161, 199-205	9.3	23

(2009-2012)

41	Sorption of chlorophenols onto fruit cuticles and potato periderm. <i>Journal of Environmental Sciences</i> , 2012 , 24, 675-81	6.4	6
40	Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. <i>Journal of Soils and Sediments</i> , 2012 , 12, 1350-1359	3.4	135
39	Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. <i>Environmental Science & Environmental Science &</i>	10.3	112
38	Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. <i>Environmental Science & Discourse (Control of the Control of th</i>	10.3	224
37	Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. <i>Journal of Hazardous Materials</i> , 2012 , 229-230, 159-69	12.8	37
36	Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium. <i>Journal of Environmental Sciences</i> , 2012 , 24, 1639-46	6.4	11
35	Adsorption of perchlorate onto raw and oxidized carbon nanotubes in aqueous solution. <i>Carbon</i> , 2012 , 50, 2209-2219	10.4	68
34	Effects of compositional heterogeneity and nanoporosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants. <i>Environmental Pollution</i> , 2011 , 159, 550-6	9.3	24
33	Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. <i>Journal of Soils and Sediments</i> , 2011 , 11, 62-71	3.4	191
32	A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. <i>Bioresource Technology</i> , 2011 , 102, 716-23	11	656
31	Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. <i>Journal of Hazardous Materials</i> , 2011 , 188, 436-42	12.8	91
30	Interaction mechanisms of organic contaminants with burned straw ash charcoal. <i>Journal of Environmental Sciences</i> , 2010 , 22, 1586-94	6.4	28
29	Single-solute and bi-solute sorption of phenanthrene and pyrene onto pine needle cuticular fractions. <i>Environmental Pollution</i> , 2010 , 158, 2478-84	9.3	38
28	Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. <i>Journal of Hazardous Materials</i> , 2010 , 179, 845-51	12.8	108
27	Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark. <i>Bioresource Technology</i> , 2010 , 101, 7307-7313	11	81
26	Effect of background electrolytes on the adsorption of nitroaromatic compounds onto bentonite. <i>Journal of Environmental Sciences</i> , 2009 , 21, 1044-52	6.4	19
25	Phenanthrene sorption by fruit cuticles and potato periderm with different compositional characteristics. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 637-44	5.7	32
24	Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. <i>Chemosphere</i> , 2009 , 76, 127-33	8.4	421

23	Role of suberin, suberan, and hemicellulose in phenanthrene sorption by root tissue fractions of switchgrass (Panicum virgatum) seedlings. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	27
22	Surfactant effects on the affinity of plant cuticles with organic pollutants. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 3681-8	5.7	15
21	Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. <i>Environmental Science & Environmental Science & </i>	10.3	1163
20	Microstructure of organo-bentonites in water and the effect of steric hindrance on the uptake of organic compounds. <i>Clays and Clay Minerals</i> , 2008 , 56, 144-154	2.1	39
19	Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation. <i>Chemosphere</i> , 2008 , 70, 1987-94	8.4	37
18	Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles. <i>Environmental Science & Environmental Sc</i>	10.3	48
17	Adsorptive characteristics of the siloxane surfaces of reduced-charge bentonites saturated with tetramethylammonium cation. <i>Environmental Science & Environmental Science & E</i>	10.3	24
16	Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 464-472		29
15	Enhanced sorption of naphthalene and nitroaromatic compounds to bentonite by potassium and cetyltrimethylammonium cations. <i>Journal of Hazardous Materials</i> , 2008 , 158, 116-23	12.8	29
14	Sorption and conformational characteristics of reconstituted plant cuticular waxes on montmorillonite. <i>Environmental Science & Environmental Science </i>	10.3	52
13	Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. <i>Environmental Science & Environmental </i>	10.3	195
12	Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. <i>Chemosphere</i> , 2005 , 58, 33-40	8.4	107
11	Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties. <i>Chemosphere</i> , 2005 , 61, 116-28	8.4	32
10	Effects of ionizable organic compounds in different species on the sorption of p-nitroaniline to sediment. <i>Water Research</i> , 2005 , 39, 281-8	12.5	13
9	Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. <i>Environmental Science & Environmental Science & Env</i>	10.3	119
8	Sorption Behavior of Polycyclic Aromatic Hydrocarbons in SoillWater System Containing Nonionic Surfactant. <i>Environmental Engineering Science</i> , 2004 , 21, 263-272	2	14
7	Significance of natural organic matter in nonlinear sorption of 2,4-dichlorophenol onto soils/sediments. <i>Water Resources Research</i> , 2004 , 40,	5.4	3
6	Pollution survey of polycyclic aromatic hydrocarbons in surface water of Hangzhou, China. <i>Chemosphere</i> , 2004 , 56, 1085-95	8.4	64

LIST OF PUBLICATIONS

5	Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. <i>Water Research</i> , 2004 , 38, 3558-68	12.5	216
4	Interactions of organic contaminants with mineral-adsorbed surfactants. <i>Environmental Science & Environmental Science</i>	10.3	124
3	Sorption of Phenol, p-Nitrophenol, and Aniline to Dual-Cation Organobentonites from Water. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	191
2	Sorption Behavior of -Nitrophenol on the Interface between Anion-Cation Organobentonite and Water <i>Environmental Science & Environmental Science & E</i>	10.3	128
1	Applications of atomic force microscopy-based imaging and force spectroscopy in assessing environmental interfacial processes. <i>Critical Reviews in Environmental Science and Technology</i> ,1-32	11.1	3