Amy Szuchmacher Blum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531048/publications.pdf Version: 2024-02-01

AMY SZUCHMACHED RUIM

#	Article	IF	CITATIONS
1	Molecularly inherent voltage-controlled conductance switching. Nature Materials, 2005, 4, 167-172.	27.5	352
2	Cowpea Mosaic Virus as a Scaffold for 3-D Patterning of Gold Nanoparticles. Nano Letters, 2004, 4, 867-870.	9.1	209
3	Critical phenomena of water bridges in nanoasperity contacts. Journal of Chemical Physics, 2001, 114, 1355-1360.	3.0	171
4	Ru2(ap)4($\ddot{l}f$ -oligo(phenyleneethynyl)) Molecular Wires:Â Synthesis and Electronic Characterization. Journal of the American Chemical Society, 2005, 127, 10010-10011.	13.7	151
5	Fluorescent Signal Amplification of Carbocyanine Dyes Using Engineered Viral Nanoparticles. Journal of the American Chemical Society, 2006, 128, 5184-5189.	13.7	123
6	An Engineered Virus as a Scaffold for Three-Dimensional Self-Assembly on the Nanoscale. Small, 2005, 1, 702-706.	10.0	114
7	A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: Application as an immunoassay tracer. Biosensors and Bioelectronics, 2006, 21, 1668-1673.	10.1	80
8	Comparing the conductivity of molecular wires with the scanning tunneling microscope. Applied Physics Letters, 2003, 82, 3322-3324.	3.3	71
9	Effect of Interfacial Liquid Structuring on the Coherence Length in Nanolubrication. Physical Review Letters, 2002, 88, 154302.	7.8	70
10	Solution Phase Gold Nanorings on a Viral Protein Template. Nano Letters, 2012, 12, 629-633.	9.1	68
11	Charge Transport and Scaling in Molecular Wires. Journal of Physical Chemistry B, 2004, 108, 18124-18128.	2.6	65
12	Role of Hexahistidine in Directed Nanoassemblies of Tobacco Mosaic Virus Coat Protein. ACS Nano, 2011, 5, 1606-1616.	14.6	61
13	Single-Molecule Charge-Transport Measurements that Reveal Technique-Dependent Perturbations. Journal of the American Chemical Society, 2006, 128, 11260-11267.	13.7	60
14	Iron Oxide Surface Chemistry: Effect of Chemical Structure on Binding in Benzoic Acid and Catechol Derivatives. Langmuir, 2017, 33, 3000-3013.	3.5	50
15	Toward Single Molecule Detection of Staphylococcal Enterotoxin B: Mobile Sandwich Immunoassay on Gliding Microtubules. Analytical Chemistry, 2008, 80, 5433-5440.	6.5	42
16	Efficient One-Step PEC-Silane Passivation of Glass Surfaces for Single-Molecule Fluorescence Studies. ACS Applied Materials & Interfaces, 2018, 10, 39505-39511.	8.0	40
17	Molecular electronics based nanosensors on a viral scaffold. Biosensors and Bioelectronics, 2011, 26, 2852-2857.	10.1	35
18	Separation and recovery of intact gold-virus complex by agarose electrophoresis and electroelution: Application to the purification of cowpea mosaic virus and colloidal gold complex. Electrophoresis, 2004, 25, 2901-2906.	2.4	33

#	Article	IF	CITATIONS
19	Templated self-assembly of quantum dots from aqueous solution using protein scaffolds. Nanotechnology, 2006, 17, 5073-5079.	2.6	32
20	An Engineered Virus as a Bright Fluorescent Tag and Scaffold for Cargo Proteins—Capture and Transport by Gliding Microtubules. Journal of Nanoscience and Nanotechnology, 2006, 6, 2451-2460.	0.9	32
21	Stable water-soluble iron oxide nanoparticles using Tiron. Materials Chemistry and Physics, 2013, 138, 29-37.	4.0	32
22	One-step ligand exchange and switching from hydrophobic to water-stable hydrophilic superparamagnetic iron oxide nanoparticles by mechanochemical milling. Chemical Communications, 2016, 52, 3054-3057.	4.1	31
23	Metrology for molecular electronics. Analytica Chimica Acta, 2006, 568, 20-27.	5.4	28
24	Quantum Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments. Langmuir, 2008, 24, 9194-9197.	3.5	25
25	Short ligands offer long-term water stability and plasmon tunability for silver nanoparticles. RSC Advances, 2015, 5, 6553-6559.	3.6	25
26	Recent Advances in Bioâ€Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. ChemSusChem, 2021, 14, 758-791.	6.8	24
27	Conductance Switching in the Photoswitchable Protein Dronpa. Journal of the American Chemical Society, 2012, 134, 16119-16122.	13.7	17
28	Viralâ€based nanomaterials for plasmonic and photonic materials and devices. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1508.	6.1	15
29	Electronic Properties of Molecular Memory Circuits on a Nanoscale Scaffold. IEEE Transactions on Nanobioscience, 2007, 6, 270-274.	3.3	14
30	Nanoring formation via <i>in situ</i> photoreduction of silver on a virus scaffold. Nanotechnology, 2016, 27, 485603.	2.6	14
31	Biosynthesized silver nanorings as a highly efficient and selective electrocatalysts for CO ₂ reduction. Nanoscale, 2019, 11, 18595-18603.	5.6	12
32	Long term storage of virus templated fluorescent materials for sensing applications. Nanotechnology, 2008, 19, 105504.	2.6	9
33	Molecular sensing: modulating molecular conduction through intermolecular interactions. Physical Chemistry Chemical Physics, 2013, 15, 8318.	2.8	8
34	Nanometals templated by tobacco mosaic virus coat protein with enhanced catalytic activity. Applied Catalysis B: Environmental, 2021, 298, 120540.	20.2	7
35	Tunable longitudinal modes in extended silver nanoparticle assemblies. Beilstein Journal of Nanotechnology, 2016, 7, 1219-1228.	2.8	6
36	Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 21-24.	3.9	6

#	Article	IF	CITATIONS
37	Tobacco Mosaic Virus Capsid Protein as Targets for the Self-Assembly of Gold Nanoparticles. Methods in Molecular Biology, 2014, 1108, 105-112.	0.9	4
38	Tunable Assembly of Protein Enables Fabrication of Platinum Nanostructures with Different Catalytic Activity. ACS Applied Materials & Interfaces, 2021, 13, 52588-52597.	8.0	4
39	Plasmonic Enhancement of Two-Photon Excitation Fluorescence by Colloidal Assemblies of Very Small AuNPs Templated on M13 Phage. Biomacromolecules, 2020, 21, 2705-2713.	5.4	3
40	Biomolecular Self-Assembly of Nanorings on a Viral Protein Template. Biomacromolecules, 2022, 23, 3407-3416.	5.4	2
41	Dual-affinity peptides to generate dense surface coverages of nanoparticles. Applied Surface Science, 2014, 296, 24-30.	6.1	1
42	TMV Disk Scaffolds for Making sub-30 nm Silver Nanorings. Methods in Molecular Biology, 2018, 1798, 109-118.	0.9	1
43	Alcohol-perturbed self-assembly of the tobacco mosaic virus coat protein. Beilstein Journal of Nanotechnology, 2022, 13, 355-362.	2.8	1
44	Virus Nanoparticles for Signal Enhancement in Microarray Biosensors. ACS Symposium Series, 2009, , 141-154.	0.5	0
45	The Importance of Calcium Ions in Poly-A RNA Mediated Tobacco Mosaic Virus-Like Rod Formation. Journal of Nanoscience and Nanotechnology, 2017, 17, 224-230.	0.9	0