MichaÅ, Krzyżaniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1530795/publications.pdf

Version: 2024-02-01

279798 361022 1,536 76 23 35 citations g-index h-index papers 77 77 77 1386 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable Energy, 2013, 57, 20-26.	8.9	148
2	Willow biomass as feedstock for an integrated multi-product biorefinery. Industrial Crops and Products, 2014, 58, 230-237.	5.2	60
3	Short rotation willow coppice biomass as an industrial and energy feedstock. Industrial Crops and Products, 2011, 33, 217-223.	5.2	55
4	Characterization of bioactive compounds in the biomass of black locust, poplar and willow. Trees - Structure and Function, 2019, 33, 1235-1263.	1.9	48
5	Effect of Increased Soil Fertility on the Yield and Energy Value of Short-Rotation Woody Crops. Bioenergy Research, 2015, 8, 1136-1147.	3.9	44
6	Lignocellulosic biomass from short rotation woody crops as a feedstock for second-generation bioethanol production. Industrial Crops and Products, 2015, 75, 66-75.	5.2	44
7	Bioenergy technologies and biomass potential vary in Northern European countries. Renewable and Sustainable Energy Reviews, 2020, 133, 110238.	16.4	44
8	Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Industrial Crops and Products, 2019, 138, 111443.	5.2	39
9	Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time. Industrial Crops and Products, 2018, 119, 22-32.	5.2	38
10	Short rotation coppices, grasses and other herbaceous crops: Productivity and yield energy value versus 26 genotypes. Biomass and Bioenergy, 2018, 119, 109-120.	5.7	37
11	Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017. Renewable and Sustainable Energy Reviews, 2019, 101, 461-475.	16.4	36
12	Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland. Energy, 2018, 150, 770-780.	8.8	35
13	Camelina and crambe production – Energy efficiency indices depending on nitrogen fertilizer application. Industrial Crops and Products, 2019, 137, 386-395.	5.2	34
14	Will Yellow Mealworm Become a Source of Safe Proteins for Europe?. Agriculture (Switzerland), 2020, 10, 233.	3.1	34
15	Energy consumption and costs of heating a detached house with wood briquettes in comparison to other fuels. Energy Conversion and Management, 2016, 121, 71-83.	9.2	30
16	Thermophysical and Chemical Properties of Perennial Energy Crops Depending on Harvest Period. International Agrophysics, 2014, 28, 201-211.	1.7	30
17	Life cycle assessment of poplar production: Environmental impact of different soil enrichment methods. Journal of Cleaner Production, 2019, 206, 785-796.	9.3	29
18	Energy, economic and environmental assessment of heating a family house with biomass. Energy and Buildings, 2013, 66, 395-404.	6.7	28

#	Article	IF	Citations
19	Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers. Energy, 2017, 134, 50-60.	8.8	28
20	Perennial herbaceous crops as a feedstock for energy and industrial purposes: Organic and mineral fertilizers versus biomass yield and efficient nitrogen utilization. Industrial Crops and Products, 2017, 107, 244-259.	5.2	26
21	Willow biomass obtained from different soils as a feedstock for energy. Industrial Crops and Products, 2015, 75, 114-121.	5.2	25
22	Economic comparison of growing different willow cultivars. Biomass and Bioenergy, 2015, 81, 210-215.	5.7	24
23	Analysis of the energy efficiency of short rotation woody crops biomass as affected by different methods of soil enrichment. Energy, 2016, 113, 748-761.	8.8	24
24	Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops. Industrial Crops and Products, 2019, 135, 10-20.	5.2	24
25	Willow bark and wood as a source of bioactive compounds and bioenergy feedstock. Industrial Crops and Products, 2021, 171, 113976.	5.2	24
26	Cost of heat energy generation from willow biomass. Renewable Energy, 2013, 59, 100-104.	8.9	23
27	Effect of storage methods on willow chips quality. Biomass and Bioenergy, 2016, 92, 61-69.	5.7	23
28	Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels. Energy, 2020, 204, 117952.	8.8	23
29	Life cycle assessment of Virginia mallow production with different fertilisation options. Journal of Cleaner Production, 2018, 177, 824-836.	9.3	22
30	Silphium perfoliatum—A Herbaceous Crop with Increased Interest in Recent Years for Multi-Purpose Use. Agriculture (Switzerland), 2020, 10, 640.	3.1	21
31	Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments. Energies, 2020, 13, 1931.	3.1	21
32	Economic efficiency of willow, poplar and black locust production using different soil amendments. Biomass and Bioenergy, 2017, 106, 74-82.	5.7	20
33	Willow production during 12 consecutive yearsâ€"The effects of harvest rotation, planting density and cultivar on biomass yield. GCB Bioenergy, 2019, 11, 635-656.	5.6	20
34	How does extraction of biologically active substances with supercritical carbon dioxide affect lignocellulosic biomass properties?. Wood Science and Technology, 2020, 54, 519-546.	3.2	20
35	Energy intensity and energy ratio in producing willow chips as feedstock for an integrated biorefinery. Biosystems Engineering, 2014, 123, 19-28.	4.3	19
36	Could Supercritical Extracts from the Aerial Parts of Helianthus salicifolius A. Dietr. and Helianthus tuberosus L. Be Regarded as Potential Raw Materials for Biocidal Purposes?. Agriculture (Switzerland), 2021, 11, 10.	3.1	19

#	Article	IF	CITATIONS
37	The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy, 2020, 10, 64.	3.0	18
38	Growth Potential of Yellow Mealworm Reared on Industrial Residues. Agriculture (Switzerland), 2020, 10, 599.	3.1	17
39	Life cycle assessment of camelina and crambe production for biorefinery and energy purposes. Journal of Cleaner Production, 2019, 237, 117755.	9.3	16
40	Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland. Energies, 2020, 13, 1495.	3.1	16
41	Camelina and Crambe Oil Crops for Bioeconomyâ€"Straw Utilisation for Energy. Energies, 2020, 13, 1503.	3.1	15
42	Willow biomass and cuttings' production potential over ten successive annual harvests. Biomass and Bioenergy, 2017, 105, 230-247.	5.7	14
43	Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review. Energies, 2021, 14, 7147.	3.1	13
44	Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity. Agriculture (Switzerland), 2020, 10, 412.	3.1	12
45	Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition. Energies, 2020, 13, 4130.	3.1	12
46	Solid Biomass Energy Potential as a Development Opportunity for Rural Communities. Energies, 2021, 14, 3398.	3.1	12
47	How does the content of nutrients in soil affect the health status of trees in city parks?. PLoS ONE, 2019, 14, e0221514.	2.5	11
48	Life Cycle Assessment of Willow Produced in Short Rotation Coppices for Energy Purposes. Journal of Biobased Materials and Bioenergy, 2013, 7, 566-578.	0.3	11
49	Extensive Willow Biomass Production on Marginal Land. Polish Journal of Environmental Studies, 2019, 28, 4359-4367.	1.2	10
50	Cascaded use of perennial industrial crop biomass: The effect of biomass type and pre-treatment method on pellet properties. Industrial Crops and Products, 2022, 185, 115104.	5.2	10
51	Environmental external cost of poplar wood chips sustainable production. Journal of Cleaner Production, 2020, 252, 119854.	9.3	9
52	Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil. Energies, 2020, 13, 2144.	3.1	9
53	The physical properties of fruits and the physiological quality of seeds of selected crambe genotypes. Industrial Crops and Products, 2020, 145, 111977.	5.2	8
54	Willow Biomass Energy Generation Efficiency and Greenhouse Gas Reduction Potential. Polish Journal of Environmental Studies, 2015, 24, 2627-2640.	1.2	8

#	Article	IF	CITATIONS
55	Quality and Delivery Costs of Wood Chips by Railway vs. Road Transport. Energies, 2021, 14, 6877.	3.1	8
56	Evaluation of biomass quality of selected woody species depending on the soil enrichment practice. International Agrophysics, 2018, 32, 111-121.	1.7	7
57	Life cycle assessment of Crambe abyssinica production for an integrated multi-product biorefinery. Environmental Biotechnology, 2014, 9, 72-80.	1.5	7
58	Supercritical production of extract from poplar containing bioactive substances – An economic analysis. Industrial Crops and Products, 2022, 184, 115094.	5.2	7
59	Elemental composition of willow short rotation crops biomass depending on variety and harvest cycle. Biomass and Bioenergy, 2017, 105, 342-350.	5.7	6
60	Thermophysical properties and elemental composition of agricultural and forest solid biofuels versus fossil fuels. Journal of Elementology, 2019, , .	0.2	6
61	Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ. Energies, 2022, 15, 1442.	3.1	6
62	Thermophysical and chemical properties of biomass obtained from willow coppice cultivated in one-and three-year rotation cycles. Journal of Elementology, 2015, , .	0.2	5
63	Legal Framework for the Sustainable Production of Short Rotation Coppice Biomass for Bioeconomy and Bioenergy. Energies, 2022, 15, 1370.	3.1	5
64	Characteristics of Thermophysical Parameters of SelectedSalixTaxa with Elemental Analysis. International Journal of Green Energy, 2015, 12, 1272-1279.	3.8	4
65	Willow Cultivation as Feedstock for Bioenergy-External Production Cost. Energies, 2020, 13, 4799.	3.1	4
66	Optimization of agricultural practices for crambe in Europe. Industrial Crops and Products, 2021, 171, 113880.	5.2	4
67	Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results. Agriculture (Switzerland), 2022, 12, 149.	3.1	4
68	Survival Analysis of Plants Grown in Long-Term Field Experiments. Agronomy Journal, 2018, 110, 1791-1798.	1.8	3
69	Production costs and residues evaluation of Crambe abyssinica as an energy feedstock. Environmental Biotechnology, 2014, 9, 59-65.	1.5	3
70	Changes of the quality of willow biomass as renewable energy feedstock harvested with biobaler. Journal of Elementology, 2015, , .	0.2	3
71	Biomass yield and quality of perennial herbaceous crops in a double harvest in a continental environment. Industrial Crops and Products, 2022, 180, 114752.	5. 2	3
72	The Energy Efficiency Of Willow Biomass Production In Poland – A Comparative Study. Papers on Global Change IGBP, 2015, 22, 123-130.	0.1	2

#	Article	IF	CITATIONS
73	Short-Rotation Woody Crops for Energy. , 2017, , 141-152.		2
74	Factors Influencing the Health Status of Trees in Parks and Forests of Urbanized Areas. Forests, 2021, 12, 656.	2.1	2
75	The Estimation of Above- and Below-Ground Biomass Residues and Carbon Sequestration Potential in Soil on Commercial Willow Plantation. Springer Proceedings in Energy, 2020, , 257-266.	0.3	1
76	Short rotation woody crops as a source of bioactive compounds depending on genotype and harvest cycle. Industrial Crops and Products, 2022, 180, 114770.	5.2	0